Looking for answers? Westonci.ca is your go-to Q&A platform, offering quick, trustworthy responses from a community of experts. Explore thousands of questions and answers from knowledgeable experts in various fields on our Q&A platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To rewrite the equation [tex]\(4x^4 - 21x^2 + 20 = 0\)[/tex] as a quadratic equation, we should use the following substitution:
1. Let's use [tex]\(u = x^2\)[/tex]. This substitution will help us reduce the polynomial with degree 4 to a quadratic polynomial.
2. First, observe how the terms of the original equation transform:
- [tex]\(4x^4\)[/tex]: Since [tex]\(u = x^2\)[/tex], then [tex]\(x^4 = (x^2)^2 = u^2\)[/tex]. Thus, [tex]\(4x^4\)[/tex] becomes [tex]\(4u^2\)[/tex].
- [tex]\(-21x^2\)[/tex]: With [tex]\(u = x^2\)[/tex], [tex]\(-21x^2\)[/tex] becomes [tex]\(-21u\)[/tex].
- The constant term [tex]\(20\)[/tex] remains the same.
3. Substituting these into the original equation, we get:
[tex]\[ 4u^2 - 21u + 20 = 0 \][/tex]
Therefore, the correct substitution to rewrite [tex]\(4x^4 - 21x^2 + 20 = 0\)[/tex] as a quadratic equation is:
[tex]\[ u = x^2 \][/tex]
So, the proper substitution is:
[tex]\[ \boxed{u = x^2} \][/tex]
1. Let's use [tex]\(u = x^2\)[/tex]. This substitution will help us reduce the polynomial with degree 4 to a quadratic polynomial.
2. First, observe how the terms of the original equation transform:
- [tex]\(4x^4\)[/tex]: Since [tex]\(u = x^2\)[/tex], then [tex]\(x^4 = (x^2)^2 = u^2\)[/tex]. Thus, [tex]\(4x^4\)[/tex] becomes [tex]\(4u^2\)[/tex].
- [tex]\(-21x^2\)[/tex]: With [tex]\(u = x^2\)[/tex], [tex]\(-21x^2\)[/tex] becomes [tex]\(-21u\)[/tex].
- The constant term [tex]\(20\)[/tex] remains the same.
3. Substituting these into the original equation, we get:
[tex]\[ 4u^2 - 21u + 20 = 0 \][/tex]
Therefore, the correct substitution to rewrite [tex]\(4x^4 - 21x^2 + 20 = 0\)[/tex] as a quadratic equation is:
[tex]\[ u = x^2 \][/tex]
So, the proper substitution is:
[tex]\[ \boxed{u = x^2} \][/tex]
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.