Explore Westonci.ca, the top Q&A platform where your questions are answered by professionals and enthusiasts alike. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To calculate the mode from the given data, we follow the steps below:
1. Identify the modal class: The modal class is the class interval with the highest frequency.
- Given frequencies are: [tex]\(3, 9, 10, 14, 15, 21, 25, 13, 15, 10, 8, 6\)[/tex].
- The highest frequency is 25, which corresponds to the class interval [tex]\(18 - 20\)[/tex].
2. Extract the necessary values:
- [tex]\(l\)[/tex]: Lower limit of the modal class, which is 18.
- [tex]\(h\)[/tex]: Class width, which is the difference between the upper and lower boundaries of the modal class. For [tex]\(18-20\)[/tex], [tex]\(h = 20 - 18 = 2\)[/tex].
- [tex]\(f_1\)[/tex]: Frequency of the modal class, which is 25.
- [tex]\(f_0\)[/tex]: Frequency of the class interval before the modal class, which is [tex]\(21\)[/tex] (For the [tex]\(15 - 18\)[/tex] class interval).
- [tex]\(f_2\)[/tex]: Frequency of the class interval after the modal class, which is [tex]\(13\)[/tex] (For the [tex]\(20 - 24\)[/tex] class interval).
3. Apply the mode formula for continuous data:
[tex]\[ \text{Mode} = l + \left( \frac{f_1 - f_0}{(f_1 - f_0) + (f_1 - f_2)} \right) \times h \][/tex]
4. Plug in the values into the formula:
[tex]\[ \text{Mode} = 18 + \left( \frac{25 - 21}{(25 - 21) + (25 - 13)} \right) \times 2 \][/tex]
5. Simplify the expression:
[tex]\[ \text{Mode} = 18 + \left( \frac{4}{4 + 12} \right) \times 2 \][/tex]
[tex]\[ \text{Mode} = 18 + \left( \frac{4}{16} \right) \times 2 \][/tex]
[tex]\[ \text{Mode} = 18 + 0.25 \times 2 \][/tex]
[tex]\[ \text{Mode} = 18 + 0.5 \][/tex]
[tex]\[ \text{Mode} = 18.5 \][/tex]
Therefore, the mode of the given data is [tex]\( \mathbf{18.5} \)[/tex].
1. Identify the modal class: The modal class is the class interval with the highest frequency.
- Given frequencies are: [tex]\(3, 9, 10, 14, 15, 21, 25, 13, 15, 10, 8, 6\)[/tex].
- The highest frequency is 25, which corresponds to the class interval [tex]\(18 - 20\)[/tex].
2. Extract the necessary values:
- [tex]\(l\)[/tex]: Lower limit of the modal class, which is 18.
- [tex]\(h\)[/tex]: Class width, which is the difference between the upper and lower boundaries of the modal class. For [tex]\(18-20\)[/tex], [tex]\(h = 20 - 18 = 2\)[/tex].
- [tex]\(f_1\)[/tex]: Frequency of the modal class, which is 25.
- [tex]\(f_0\)[/tex]: Frequency of the class interval before the modal class, which is [tex]\(21\)[/tex] (For the [tex]\(15 - 18\)[/tex] class interval).
- [tex]\(f_2\)[/tex]: Frequency of the class interval after the modal class, which is [tex]\(13\)[/tex] (For the [tex]\(20 - 24\)[/tex] class interval).
3. Apply the mode formula for continuous data:
[tex]\[ \text{Mode} = l + \left( \frac{f_1 - f_0}{(f_1 - f_0) + (f_1 - f_2)} \right) \times h \][/tex]
4. Plug in the values into the formula:
[tex]\[ \text{Mode} = 18 + \left( \frac{25 - 21}{(25 - 21) + (25 - 13)} \right) \times 2 \][/tex]
5. Simplify the expression:
[tex]\[ \text{Mode} = 18 + \left( \frac{4}{4 + 12} \right) \times 2 \][/tex]
[tex]\[ \text{Mode} = 18 + \left( \frac{4}{16} \right) \times 2 \][/tex]
[tex]\[ \text{Mode} = 18 + 0.25 \times 2 \][/tex]
[tex]\[ \text{Mode} = 18 + 0.5 \][/tex]
[tex]\[ \text{Mode} = 18.5 \][/tex]
Therefore, the mode of the given data is [tex]\( \mathbf{18.5} \)[/tex].
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.