Looking for reliable answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To calculate the mode from the given data, we follow the steps below:
1. Identify the modal class: The modal class is the class interval with the highest frequency.
- Given frequencies are: [tex]\(3, 9, 10, 14, 15, 21, 25, 13, 15, 10, 8, 6\)[/tex].
- The highest frequency is 25, which corresponds to the class interval [tex]\(18 - 20\)[/tex].
2. Extract the necessary values:
- [tex]\(l\)[/tex]: Lower limit of the modal class, which is 18.
- [tex]\(h\)[/tex]: Class width, which is the difference between the upper and lower boundaries of the modal class. For [tex]\(18-20\)[/tex], [tex]\(h = 20 - 18 = 2\)[/tex].
- [tex]\(f_1\)[/tex]: Frequency of the modal class, which is 25.
- [tex]\(f_0\)[/tex]: Frequency of the class interval before the modal class, which is [tex]\(21\)[/tex] (For the [tex]\(15 - 18\)[/tex] class interval).
- [tex]\(f_2\)[/tex]: Frequency of the class interval after the modal class, which is [tex]\(13\)[/tex] (For the [tex]\(20 - 24\)[/tex] class interval).
3. Apply the mode formula for continuous data:
[tex]\[ \text{Mode} = l + \left( \frac{f_1 - f_0}{(f_1 - f_0) + (f_1 - f_2)} \right) \times h \][/tex]
4. Plug in the values into the formula:
[tex]\[ \text{Mode} = 18 + \left( \frac{25 - 21}{(25 - 21) + (25 - 13)} \right) \times 2 \][/tex]
5. Simplify the expression:
[tex]\[ \text{Mode} = 18 + \left( \frac{4}{4 + 12} \right) \times 2 \][/tex]
[tex]\[ \text{Mode} = 18 + \left( \frac{4}{16} \right) \times 2 \][/tex]
[tex]\[ \text{Mode} = 18 + 0.25 \times 2 \][/tex]
[tex]\[ \text{Mode} = 18 + 0.5 \][/tex]
[tex]\[ \text{Mode} = 18.5 \][/tex]
Therefore, the mode of the given data is [tex]\( \mathbf{18.5} \)[/tex].
1. Identify the modal class: The modal class is the class interval with the highest frequency.
- Given frequencies are: [tex]\(3, 9, 10, 14, 15, 21, 25, 13, 15, 10, 8, 6\)[/tex].
- The highest frequency is 25, which corresponds to the class interval [tex]\(18 - 20\)[/tex].
2. Extract the necessary values:
- [tex]\(l\)[/tex]: Lower limit of the modal class, which is 18.
- [tex]\(h\)[/tex]: Class width, which is the difference between the upper and lower boundaries of the modal class. For [tex]\(18-20\)[/tex], [tex]\(h = 20 - 18 = 2\)[/tex].
- [tex]\(f_1\)[/tex]: Frequency of the modal class, which is 25.
- [tex]\(f_0\)[/tex]: Frequency of the class interval before the modal class, which is [tex]\(21\)[/tex] (For the [tex]\(15 - 18\)[/tex] class interval).
- [tex]\(f_2\)[/tex]: Frequency of the class interval after the modal class, which is [tex]\(13\)[/tex] (For the [tex]\(20 - 24\)[/tex] class interval).
3. Apply the mode formula for continuous data:
[tex]\[ \text{Mode} = l + \left( \frac{f_1 - f_0}{(f_1 - f_0) + (f_1 - f_2)} \right) \times h \][/tex]
4. Plug in the values into the formula:
[tex]\[ \text{Mode} = 18 + \left( \frac{25 - 21}{(25 - 21) + (25 - 13)} \right) \times 2 \][/tex]
5. Simplify the expression:
[tex]\[ \text{Mode} = 18 + \left( \frac{4}{4 + 12} \right) \times 2 \][/tex]
[tex]\[ \text{Mode} = 18 + \left( \frac{4}{16} \right) \times 2 \][/tex]
[tex]\[ \text{Mode} = 18 + 0.25 \times 2 \][/tex]
[tex]\[ \text{Mode} = 18 + 0.5 \][/tex]
[tex]\[ \text{Mode} = 18.5 \][/tex]
Therefore, the mode of the given data is [tex]\( \mathbf{18.5} \)[/tex].
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.