Looking for trustworthy answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Discover solutions to your questions from experienced professionals across multiple fields on our comprehensive Q&A platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To calculate the mode from the given data, we follow the steps below:
1. Identify the modal class: The modal class is the class interval with the highest frequency.
- Given frequencies are: [tex]\(3, 9, 10, 14, 15, 21, 25, 13, 15, 10, 8, 6\)[/tex].
- The highest frequency is 25, which corresponds to the class interval [tex]\(18 - 20\)[/tex].
2. Extract the necessary values:
- [tex]\(l\)[/tex]: Lower limit of the modal class, which is 18.
- [tex]\(h\)[/tex]: Class width, which is the difference between the upper and lower boundaries of the modal class. For [tex]\(18-20\)[/tex], [tex]\(h = 20 - 18 = 2\)[/tex].
- [tex]\(f_1\)[/tex]: Frequency of the modal class, which is 25.
- [tex]\(f_0\)[/tex]: Frequency of the class interval before the modal class, which is [tex]\(21\)[/tex] (For the [tex]\(15 - 18\)[/tex] class interval).
- [tex]\(f_2\)[/tex]: Frequency of the class interval after the modal class, which is [tex]\(13\)[/tex] (For the [tex]\(20 - 24\)[/tex] class interval).
3. Apply the mode formula for continuous data:
[tex]\[ \text{Mode} = l + \left( \frac{f_1 - f_0}{(f_1 - f_0) + (f_1 - f_2)} \right) \times h \][/tex]
4. Plug in the values into the formula:
[tex]\[ \text{Mode} = 18 + \left( \frac{25 - 21}{(25 - 21) + (25 - 13)} \right) \times 2 \][/tex]
5. Simplify the expression:
[tex]\[ \text{Mode} = 18 + \left( \frac{4}{4 + 12} \right) \times 2 \][/tex]
[tex]\[ \text{Mode} = 18 + \left( \frac{4}{16} \right) \times 2 \][/tex]
[tex]\[ \text{Mode} = 18 + 0.25 \times 2 \][/tex]
[tex]\[ \text{Mode} = 18 + 0.5 \][/tex]
[tex]\[ \text{Mode} = 18.5 \][/tex]
Therefore, the mode of the given data is [tex]\( \mathbf{18.5} \)[/tex].
1. Identify the modal class: The modal class is the class interval with the highest frequency.
- Given frequencies are: [tex]\(3, 9, 10, 14, 15, 21, 25, 13, 15, 10, 8, 6\)[/tex].
- The highest frequency is 25, which corresponds to the class interval [tex]\(18 - 20\)[/tex].
2. Extract the necessary values:
- [tex]\(l\)[/tex]: Lower limit of the modal class, which is 18.
- [tex]\(h\)[/tex]: Class width, which is the difference between the upper and lower boundaries of the modal class. For [tex]\(18-20\)[/tex], [tex]\(h = 20 - 18 = 2\)[/tex].
- [tex]\(f_1\)[/tex]: Frequency of the modal class, which is 25.
- [tex]\(f_0\)[/tex]: Frequency of the class interval before the modal class, which is [tex]\(21\)[/tex] (For the [tex]\(15 - 18\)[/tex] class interval).
- [tex]\(f_2\)[/tex]: Frequency of the class interval after the modal class, which is [tex]\(13\)[/tex] (For the [tex]\(20 - 24\)[/tex] class interval).
3. Apply the mode formula for continuous data:
[tex]\[ \text{Mode} = l + \left( \frac{f_1 - f_0}{(f_1 - f_0) + (f_1 - f_2)} \right) \times h \][/tex]
4. Plug in the values into the formula:
[tex]\[ \text{Mode} = 18 + \left( \frac{25 - 21}{(25 - 21) + (25 - 13)} \right) \times 2 \][/tex]
5. Simplify the expression:
[tex]\[ \text{Mode} = 18 + \left( \frac{4}{4 + 12} \right) \times 2 \][/tex]
[tex]\[ \text{Mode} = 18 + \left( \frac{4}{16} \right) \times 2 \][/tex]
[tex]\[ \text{Mode} = 18 + 0.25 \times 2 \][/tex]
[tex]\[ \text{Mode} = 18 + 0.5 \][/tex]
[tex]\[ \text{Mode} = 18.5 \][/tex]
Therefore, the mode of the given data is [tex]\( \mathbf{18.5} \)[/tex].
We hope this was helpful. Please come back whenever you need more information or answers to your queries. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.