At Westonci.ca, we connect you with experts who provide detailed answers to your most pressing questions. Start exploring now! Get quick and reliable solutions to your questions from a community of experienced professionals on our platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
Sure! Let's go through the problem step-by-step.
### Step 1: Express the formula in terms of [tex]\( l \)[/tex]
We start with the given formula for the perimeter:
[tex]\[ P = 2l + 2w \][/tex]
We need to express this formula in terms of [tex]\( l \)[/tex]. To do so, we will solve for [tex]\( l \)[/tex]:
1. Subtract [tex]\( 2w \)[/tex] from both sides of the equation:
[tex]\[ P - 2w = 2l \][/tex]
2. Divide both sides by 2 to isolate [tex]\( l \)[/tex]:
[tex]\[ l = \frac{P - 2w}{2} \][/tex]
### Step 2: Substitute the given values into the new formula
We are given that the perimeter [tex]\( P \)[/tex] is 68 and the width [tex]\( w \)[/tex] is 13. Now we substitute these values into our new formula:
[tex]\[ l = \frac{68 - 2 \cdot 13}{2} \][/tex]
### Step 3: Simplify the expression
First, calculate the term inside the parentheses:
[tex]\[ 2 \cdot 13 = 26 \][/tex]
Now substitute this back into the equation:
[tex]\[ l = \frac{68 - 26}{2} \][/tex]
Next, perform the subtraction:
[tex]\[ 68 - 26 = 42 \][/tex]
Now substitute this result back into the equation:
[tex]\[ l = \frac{42}{2} \][/tex]
Finally, perform the division:
[tex]\[ l = 21 \][/tex]
### Step 4: Conclusion
The length [tex]\( l \)[/tex] when the perimeter is 68 and the width is 13 is 21.
So, the length [tex]\( l = 21 \)[/tex] when the perimeter [tex]\( P = 68 \)[/tex] and the width [tex]\( w = 13 \)[/tex].
### Step 1: Express the formula in terms of [tex]\( l \)[/tex]
We start with the given formula for the perimeter:
[tex]\[ P = 2l + 2w \][/tex]
We need to express this formula in terms of [tex]\( l \)[/tex]. To do so, we will solve for [tex]\( l \)[/tex]:
1. Subtract [tex]\( 2w \)[/tex] from both sides of the equation:
[tex]\[ P - 2w = 2l \][/tex]
2. Divide both sides by 2 to isolate [tex]\( l \)[/tex]:
[tex]\[ l = \frac{P - 2w}{2} \][/tex]
### Step 2: Substitute the given values into the new formula
We are given that the perimeter [tex]\( P \)[/tex] is 68 and the width [tex]\( w \)[/tex] is 13. Now we substitute these values into our new formula:
[tex]\[ l = \frac{68 - 2 \cdot 13}{2} \][/tex]
### Step 3: Simplify the expression
First, calculate the term inside the parentheses:
[tex]\[ 2 \cdot 13 = 26 \][/tex]
Now substitute this back into the equation:
[tex]\[ l = \frac{68 - 26}{2} \][/tex]
Next, perform the subtraction:
[tex]\[ 68 - 26 = 42 \][/tex]
Now substitute this result back into the equation:
[tex]\[ l = \frac{42}{2} \][/tex]
Finally, perform the division:
[tex]\[ l = 21 \][/tex]
### Step 4: Conclusion
The length [tex]\( l \)[/tex] when the perimeter is 68 and the width is 13 is 21.
So, the length [tex]\( l = 21 \)[/tex] when the perimeter [tex]\( P = 68 \)[/tex] and the width [tex]\( w = 13 \)[/tex].
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.