Welcome to Westonci.ca, the place where your questions find answers from a community of knowledgeable experts. Our platform provides a seamless experience for finding reliable answers from a knowledgeable network of professionals. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
Sure! Let's go through the problem step-by-step.
### Step 1: Express the formula in terms of [tex]\( l \)[/tex]
We start with the given formula for the perimeter:
[tex]\[ P = 2l + 2w \][/tex]
We need to express this formula in terms of [tex]\( l \)[/tex]. To do so, we will solve for [tex]\( l \)[/tex]:
1. Subtract [tex]\( 2w \)[/tex] from both sides of the equation:
[tex]\[ P - 2w = 2l \][/tex]
2. Divide both sides by 2 to isolate [tex]\( l \)[/tex]:
[tex]\[ l = \frac{P - 2w}{2} \][/tex]
### Step 2: Substitute the given values into the new formula
We are given that the perimeter [tex]\( P \)[/tex] is 68 and the width [tex]\( w \)[/tex] is 13. Now we substitute these values into our new formula:
[tex]\[ l = \frac{68 - 2 \cdot 13}{2} \][/tex]
### Step 3: Simplify the expression
First, calculate the term inside the parentheses:
[tex]\[ 2 \cdot 13 = 26 \][/tex]
Now substitute this back into the equation:
[tex]\[ l = \frac{68 - 26}{2} \][/tex]
Next, perform the subtraction:
[tex]\[ 68 - 26 = 42 \][/tex]
Now substitute this result back into the equation:
[tex]\[ l = \frac{42}{2} \][/tex]
Finally, perform the division:
[tex]\[ l = 21 \][/tex]
### Step 4: Conclusion
The length [tex]\( l \)[/tex] when the perimeter is 68 and the width is 13 is 21.
So, the length [tex]\( l = 21 \)[/tex] when the perimeter [tex]\( P = 68 \)[/tex] and the width [tex]\( w = 13 \)[/tex].
### Step 1: Express the formula in terms of [tex]\( l \)[/tex]
We start with the given formula for the perimeter:
[tex]\[ P = 2l + 2w \][/tex]
We need to express this formula in terms of [tex]\( l \)[/tex]. To do so, we will solve for [tex]\( l \)[/tex]:
1. Subtract [tex]\( 2w \)[/tex] from both sides of the equation:
[tex]\[ P - 2w = 2l \][/tex]
2. Divide both sides by 2 to isolate [tex]\( l \)[/tex]:
[tex]\[ l = \frac{P - 2w}{2} \][/tex]
### Step 2: Substitute the given values into the new formula
We are given that the perimeter [tex]\( P \)[/tex] is 68 and the width [tex]\( w \)[/tex] is 13. Now we substitute these values into our new formula:
[tex]\[ l = \frac{68 - 2 \cdot 13}{2} \][/tex]
### Step 3: Simplify the expression
First, calculate the term inside the parentheses:
[tex]\[ 2 \cdot 13 = 26 \][/tex]
Now substitute this back into the equation:
[tex]\[ l = \frac{68 - 26}{2} \][/tex]
Next, perform the subtraction:
[tex]\[ 68 - 26 = 42 \][/tex]
Now substitute this result back into the equation:
[tex]\[ l = \frac{42}{2} \][/tex]
Finally, perform the division:
[tex]\[ l = 21 \][/tex]
### Step 4: Conclusion
The length [tex]\( l \)[/tex] when the perimeter is 68 and the width is 13 is 21.
So, the length [tex]\( l = 21 \)[/tex] when the perimeter [tex]\( P = 68 \)[/tex] and the width [tex]\( w = 13 \)[/tex].
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.