Westonci.ca is your trusted source for accurate answers to all your questions. Join our community and start learning today! Find reliable answers to your questions from a wide community of knowledgeable experts on our user-friendly Q&A platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To determine the [tex]\( t \)[/tex]-test statistic for Adam's road trip average speeds, we need to utilize the [tex]\( t \)[/tex]-test formula:
[tex]\[ t = \frac{\bar{x} - \mu}{s / \sqrt{n}} \][/tex]
where:
- [tex]\(\bar{x}\)[/tex] is the sample mean
- [tex]\(\mu\)[/tex] is the population mean
- [tex]\(s\)[/tex] is the sample standard deviation
- [tex]\(n\)[/tex] is the sample size
Given the values:
- Sample speeds: [tex]\(60.5, 63.2, 54.7, 51.6, 72.3, 70.7, 67.2, 65.4 \, \text{mph}\)[/tex]
- Sample standard deviation, [tex]\(s = 7.309\)[/tex]
- Population mean, [tex]\(\mu = 65 \, \text{mph}\)[/tex]
- Sample size, [tex]\(n = 8\)[/tex]
First, we calculate the sample mean, [tex]\(\bar{x}\)[/tex]:
[tex]\[ \bar{x} = \frac{60.5 + 63.2 + 54.7 + 51.6 + 72.3 + 70.7 + 67.2 + 65.4}{8} \][/tex]
The sum of the speeds is:
[tex]\[ 60.5 + 63.2 + 54.7 + 51.6 + 72.3 + 70.7 + 67.2 + 65.4 = 505.6 \][/tex]
Therefore, the sample mean, [tex]\(\bar{x}\)[/tex]:
[tex]\[ \bar{x} = \frac{505.6}{8} = 63.2 \][/tex]
Now, substitute the values into the formula:
[tex]\[ t = \frac{63.2 - 65}{7.309 / \sqrt{8}} \][/tex]
First, compute the denominator:
[tex]\[ s / \sqrt{n} = 7.309 / \sqrt{8} \][/tex]
[tex]\[ \sqrt{8} \approx 2.828 \][/tex]
[tex]\[ 7.309 / 2.828 \approx 2.585 \][/tex]
Now, compute the [tex]\( t \)[/tex]-value:
[tex]\[ t = \frac{63.2 - 65}{2.585} \][/tex]
[tex]\[ t = \frac{-1.8}{2.585} \][/tex]
[tex]\[ t \approx -0.6965616123331693 \][/tex]
Finally, rounded to the hundredths place, the [tex]\( t \)[/tex]-statistic is approximately [tex]\( -0.70 \)[/tex]. Given the answer choices, none match exactly the computed [tex]\( t \)[/tex]-statistic. Instead, the closest rounded value (though note there are no close matches to [tex]\( -0.70\)[/tex]) provided is not represented in the options [tex]\( -2.87 \)[/tex] or [tex]\( -1.44 \)[/tex].
[tex]\[ t = \frac{\bar{x} - \mu}{s / \sqrt{n}} \][/tex]
where:
- [tex]\(\bar{x}\)[/tex] is the sample mean
- [tex]\(\mu\)[/tex] is the population mean
- [tex]\(s\)[/tex] is the sample standard deviation
- [tex]\(n\)[/tex] is the sample size
Given the values:
- Sample speeds: [tex]\(60.5, 63.2, 54.7, 51.6, 72.3, 70.7, 67.2, 65.4 \, \text{mph}\)[/tex]
- Sample standard deviation, [tex]\(s = 7.309\)[/tex]
- Population mean, [tex]\(\mu = 65 \, \text{mph}\)[/tex]
- Sample size, [tex]\(n = 8\)[/tex]
First, we calculate the sample mean, [tex]\(\bar{x}\)[/tex]:
[tex]\[ \bar{x} = \frac{60.5 + 63.2 + 54.7 + 51.6 + 72.3 + 70.7 + 67.2 + 65.4}{8} \][/tex]
The sum of the speeds is:
[tex]\[ 60.5 + 63.2 + 54.7 + 51.6 + 72.3 + 70.7 + 67.2 + 65.4 = 505.6 \][/tex]
Therefore, the sample mean, [tex]\(\bar{x}\)[/tex]:
[tex]\[ \bar{x} = \frac{505.6}{8} = 63.2 \][/tex]
Now, substitute the values into the formula:
[tex]\[ t = \frac{63.2 - 65}{7.309 / \sqrt{8}} \][/tex]
First, compute the denominator:
[tex]\[ s / \sqrt{n} = 7.309 / \sqrt{8} \][/tex]
[tex]\[ \sqrt{8} \approx 2.828 \][/tex]
[tex]\[ 7.309 / 2.828 \approx 2.585 \][/tex]
Now, compute the [tex]\( t \)[/tex]-value:
[tex]\[ t = \frac{63.2 - 65}{2.585} \][/tex]
[tex]\[ t = \frac{-1.8}{2.585} \][/tex]
[tex]\[ t \approx -0.6965616123331693 \][/tex]
Finally, rounded to the hundredths place, the [tex]\( t \)[/tex]-statistic is approximately [tex]\( -0.70 \)[/tex]. Given the answer choices, none match exactly the computed [tex]\( t \)[/tex]-statistic. Instead, the closest rounded value (though note there are no close matches to [tex]\( -0.70\)[/tex]) provided is not represented in the options [tex]\( -2.87 \)[/tex] or [tex]\( -1.44 \)[/tex].
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.