Welcome to Westonci.ca, where curiosity meets expertise. Ask any question and receive fast, accurate answers from our knowledgeable community. Join our platform to connect with experts ready to provide detailed answers to your questions in various areas. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
Let's prove the given trigonometric identities in a step-by-step manner.
### Proving the First Identity
[tex]\[ \frac{\cos B + \cos C}{\sin B - \sin C} = \cot \frac{B - C}{2} \][/tex]
To prove this, we use sum-to-product identities.
1. Sum-to-Product for Cosine:
[tex]\[ \cos B + \cos C = 2 \cos \left( \frac{B + C}{2} \right) \cos \left( \frac{B - C}{2} \right) \][/tex]
2. Sum-to-Product for Sine:
[tex]\[ \sin B - \sin C = 2 \cos \left( \frac{B + C}{2} \right) \sin \left( \frac{B - C}{2} \right) \][/tex]
Now, substituting these identities into our original fraction:
[tex]\[ \frac{\cos B + \cos C}{\sin B - \sin C} = \frac{2 \cos \left( \frac{B + C}{2} \right) \cos \left( \frac{B - C}{2} \right)}{2 \cos \left( \frac{B + C}{2} \right) \sin \left( \frac{B - C}{2} \right)} \][/tex]
3. Simplify the expression by canceling common factors:
[tex]\[ \frac{2 \cos \left( \frac{B + C}{2} \right) \cos \left( \frac{B - C}{2} \right)}{2 \cos \left( \frac{B + C}{2} \right) \sin \left( \frac{B - C}{2} \right)} = \frac{\cos \left( \frac{B - C}{2} \right)}{\sin \left( \frac{B - C}{2} \right)} \][/tex]
4. Recognize the quotient as cotangent:
[tex]\[ \frac{\cos \left( \frac{B - C}{2} \right)}{\sin \left( \frac{B - C}{2} \right)} = \cot \left( \frac{B - C}{2} \right) \][/tex]
Thus, we have proved the first identity:
[tex]\[ \frac{\cos B + \cos C}{\sin B - \sin C} = \cot \frac{B - C}{2} \][/tex]
### Proving the Second Identity
[tex]\[ \frac{\cos B - \cos C}{\sin B + \sin C} = -\tan \frac{B - C}{2} \][/tex]
Similarly, we use sum-to-product identities for the second proof.
1. Sum-to-Product for Cosine:
[tex]\[ \cos B - \cos C = -2 \sin \left( \frac{B + C}{2} \right) \sin \left( \frac{B - C}{2} \right) \][/tex]
2. Sum-to-Product for Sine:
[tex]\[ \sin B + \sin C = 2 \sin \left( \frac{B + C}{2} \right) \cos \left( \frac{B - C}{2} \right) \][/tex]
Now, substituting these identities into our original fraction:
[tex]\[ \frac{\cos B - \cos C}{\sin B + \sin C} = \frac{-2 \sin \left( \frac{B + C}{2} \right) \sin \left( \frac{B - C}{2} \right)}{2 \sin \left( \frac{B + C}{2} \right) \cos \left( \frac{B - C}{2} \right)} \][/tex]
3. Simplify the expression by canceling common factors:
[tex]\[ \frac{-2 \sin \left( \frac{B + C}{2} \right) \sin \left( \frac{B - C}{2} \right)}{2 \sin \left( \frac{B + C}{2} \right) \cos \left( \frac{B - C}{2} \right)} = \frac{- \sin \left( \frac{B - C}{2} \right)}{\cos \left( \frac{B - C}{2} \right)} \][/tex]
4. Recognize the quotient as tangent:
[tex]\[ \frac{- \sin \left( \frac{B - C}{2} \right)}{\cos \left( \frac{B - C}{2} \right)} = -\tan \left( \frac{B - C}{2} \right) \][/tex]
Thus, we have proved the second identity:
[tex]\[ \frac{\cos B - \cos C}{\sin B + \sin C} = -\tan \frac{B - C}{2} \][/tex]
Both identities are now proven.
### Proving the First Identity
[tex]\[ \frac{\cos B + \cos C}{\sin B - \sin C} = \cot \frac{B - C}{2} \][/tex]
To prove this, we use sum-to-product identities.
1. Sum-to-Product for Cosine:
[tex]\[ \cos B + \cos C = 2 \cos \left( \frac{B + C}{2} \right) \cos \left( \frac{B - C}{2} \right) \][/tex]
2. Sum-to-Product for Sine:
[tex]\[ \sin B - \sin C = 2 \cos \left( \frac{B + C}{2} \right) \sin \left( \frac{B - C}{2} \right) \][/tex]
Now, substituting these identities into our original fraction:
[tex]\[ \frac{\cos B + \cos C}{\sin B - \sin C} = \frac{2 \cos \left( \frac{B + C}{2} \right) \cos \left( \frac{B - C}{2} \right)}{2 \cos \left( \frac{B + C}{2} \right) \sin \left( \frac{B - C}{2} \right)} \][/tex]
3. Simplify the expression by canceling common factors:
[tex]\[ \frac{2 \cos \left( \frac{B + C}{2} \right) \cos \left( \frac{B - C}{2} \right)}{2 \cos \left( \frac{B + C}{2} \right) \sin \left( \frac{B - C}{2} \right)} = \frac{\cos \left( \frac{B - C}{2} \right)}{\sin \left( \frac{B - C}{2} \right)} \][/tex]
4. Recognize the quotient as cotangent:
[tex]\[ \frac{\cos \left( \frac{B - C}{2} \right)}{\sin \left( \frac{B - C}{2} \right)} = \cot \left( \frac{B - C}{2} \right) \][/tex]
Thus, we have proved the first identity:
[tex]\[ \frac{\cos B + \cos C}{\sin B - \sin C} = \cot \frac{B - C}{2} \][/tex]
### Proving the Second Identity
[tex]\[ \frac{\cos B - \cos C}{\sin B + \sin C} = -\tan \frac{B - C}{2} \][/tex]
Similarly, we use sum-to-product identities for the second proof.
1. Sum-to-Product for Cosine:
[tex]\[ \cos B - \cos C = -2 \sin \left( \frac{B + C}{2} \right) \sin \left( \frac{B - C}{2} \right) \][/tex]
2. Sum-to-Product for Sine:
[tex]\[ \sin B + \sin C = 2 \sin \left( \frac{B + C}{2} \right) \cos \left( \frac{B - C}{2} \right) \][/tex]
Now, substituting these identities into our original fraction:
[tex]\[ \frac{\cos B - \cos C}{\sin B + \sin C} = \frac{-2 \sin \left( \frac{B + C}{2} \right) \sin \left( \frac{B - C}{2} \right)}{2 \sin \left( \frac{B + C}{2} \right) \cos \left( \frac{B - C}{2} \right)} \][/tex]
3. Simplify the expression by canceling common factors:
[tex]\[ \frac{-2 \sin \left( \frac{B + C}{2} \right) \sin \left( \frac{B - C}{2} \right)}{2 \sin \left( \frac{B + C}{2} \right) \cos \left( \frac{B - C}{2} \right)} = \frac{- \sin \left( \frac{B - C}{2} \right)}{\cos \left( \frac{B - C}{2} \right)} \][/tex]
4. Recognize the quotient as tangent:
[tex]\[ \frac{- \sin \left( \frac{B - C}{2} \right)}{\cos \left( \frac{B - C}{2} \right)} = -\tan \left( \frac{B - C}{2} \right) \][/tex]
Thus, we have proved the second identity:
[tex]\[ \frac{\cos B - \cos C}{\sin B + \sin C} = -\tan \frac{B - C}{2} \][/tex]
Both identities are now proven.
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.