Westonci.ca connects you with experts who provide insightful answers to your questions. Join us today and start learning! Connect with a community of experts ready to help you find solutions to your questions quickly and accurately. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To solve this problem, we need to understand the relationship between the coefficient of volume expansion and the coefficient of areal expansion for a solid material.
1. Coefficient of Volume Expansion (α_v): This is a measure of the fractional change in volume per degree change in temperature. Given in the problem as:
[tex]\[ \alpha_v = 0.00027 /^{\circ} C \][/tex]
2. Coefficient of Areal Expansion (α_a): This is the measure of the fractional change in area per degree change in temperature. For isotropic materials (materials with properties that are the same in all directions), the coefficient of areal expansion can be approximated as two-thirds of the coefficient of volume expansion. Mathematically, this relationship is given by:
[tex]\[ \alpha_a = \frac{2}{3} \alpha_v \][/tex]
3. Calculation:
[tex]\[ \alpha_a = \frac{2}{3} \times 0.00027 /^{\circ} C \][/tex]
When we multiply 0.00027 by [tex]\(\frac{2}{3}\)[/tex], we get:
[tex]\[ \alpha_a = 0.00018 /^{\circ} C \][/tex]
Evaluating the options given:
1. [tex]$0.00009 /^{\circ} C$[/tex]
2. [tex]$0.00018 /^{\circ} C$[/tex]
3. [tex]$0.00027 /^{\circ} C$[/tex]
4. [tex]$0.00003 /^{\circ} C$[/tex]
The correct coefficient of areal expansion is [tex]\(0.00018 /^{\circ} C\)[/tex].
Thus, the correct answer is:
2) [tex]$0.00018 /^{\circ} C$[/tex]
1. Coefficient of Volume Expansion (α_v): This is a measure of the fractional change in volume per degree change in temperature. Given in the problem as:
[tex]\[ \alpha_v = 0.00027 /^{\circ} C \][/tex]
2. Coefficient of Areal Expansion (α_a): This is the measure of the fractional change in area per degree change in temperature. For isotropic materials (materials with properties that are the same in all directions), the coefficient of areal expansion can be approximated as two-thirds of the coefficient of volume expansion. Mathematically, this relationship is given by:
[tex]\[ \alpha_a = \frac{2}{3} \alpha_v \][/tex]
3. Calculation:
[tex]\[ \alpha_a = \frac{2}{3} \times 0.00027 /^{\circ} C \][/tex]
When we multiply 0.00027 by [tex]\(\frac{2}{3}\)[/tex], we get:
[tex]\[ \alpha_a = 0.00018 /^{\circ} C \][/tex]
Evaluating the options given:
1. [tex]$0.00009 /^{\circ} C$[/tex]
2. [tex]$0.00018 /^{\circ} C$[/tex]
3. [tex]$0.00027 /^{\circ} C$[/tex]
4. [tex]$0.00003 /^{\circ} C$[/tex]
The correct coefficient of areal expansion is [tex]\(0.00018 /^{\circ} C\)[/tex].
Thus, the correct answer is:
2) [tex]$0.00018 /^{\circ} C$[/tex]
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.