Discover answers to your most pressing questions at Westonci.ca, the ultimate Q&A platform that connects you with expert solutions. Get expert answers to your questions quickly and accurately from our dedicated community of professionals. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To solve this problem, we need to follow these steps systematically:
1. Understand the given relationship:
We know that [tex]\(\sqrt{q}\)[/tex] is inversely proportional to [tex]\(r\)[/tex]. This tells us that [tex]\(\sqrt{q} = \frac{k}{r}\)[/tex], where [tex]\(k\)[/tex] is a constant of proportionality.
2. Use the initial given values to find [tex]\(k\)[/tex]:
We are told that [tex]\(\sqrt{q} = 9\)[/tex] when [tex]\(r = 4\)[/tex]. Substituting these values into the equation, we get:
[tex]\[ 9 = \frac{k}{4} \][/tex]
To solve for [tex]\(k\)[/tex], we multiply both sides of the equation by 4:
[tex]\[ k = 9 \times 4 = 36 \][/tex]
3. Determine [tex]\(r\)[/tex] when [tex]\(q=4\)[/tex]:
First, find [tex]\(\sqrt{q}\)[/tex] for the new value of [tex]\(q\)[/tex]:
[tex]\[ \sqrt{q} = \sqrt{4} = 2 \][/tex]
4. Use the constant [tex]\(k\)[/tex] to find the new [tex]\(r\)[/tex]:
We now use the relationship [tex]\(\sqrt{q} = \frac{k}{r}\)[/tex]. Plugging in the value of [tex]\(\sqrt{q} = 2\)[/tex] and [tex]\(k = 36\)[/tex], we get:
[tex]\[ 2 = \frac{36}{r} \][/tex]
Solving for [tex]\(r\)[/tex], we multiply both sides of the equation by [tex]\(r\)[/tex]:
[tex]\[ 2r = 36 \][/tex]
Dividing both sides by 2, we get:
[tex]\[ r = \frac{36}{2} = 18 \][/tex]
Therefore, the value of [tex]\(r\)[/tex] when [tex]\(q = 4\)[/tex] is [tex]\(18\)[/tex].
1. Understand the given relationship:
We know that [tex]\(\sqrt{q}\)[/tex] is inversely proportional to [tex]\(r\)[/tex]. This tells us that [tex]\(\sqrt{q} = \frac{k}{r}\)[/tex], where [tex]\(k\)[/tex] is a constant of proportionality.
2. Use the initial given values to find [tex]\(k\)[/tex]:
We are told that [tex]\(\sqrt{q} = 9\)[/tex] when [tex]\(r = 4\)[/tex]. Substituting these values into the equation, we get:
[tex]\[ 9 = \frac{k}{4} \][/tex]
To solve for [tex]\(k\)[/tex], we multiply both sides of the equation by 4:
[tex]\[ k = 9 \times 4 = 36 \][/tex]
3. Determine [tex]\(r\)[/tex] when [tex]\(q=4\)[/tex]:
First, find [tex]\(\sqrt{q}\)[/tex] for the new value of [tex]\(q\)[/tex]:
[tex]\[ \sqrt{q} = \sqrt{4} = 2 \][/tex]
4. Use the constant [tex]\(k\)[/tex] to find the new [tex]\(r\)[/tex]:
We now use the relationship [tex]\(\sqrt{q} = \frac{k}{r}\)[/tex]. Plugging in the value of [tex]\(\sqrt{q} = 2\)[/tex] and [tex]\(k = 36\)[/tex], we get:
[tex]\[ 2 = \frac{36}{r} \][/tex]
Solving for [tex]\(r\)[/tex], we multiply both sides of the equation by [tex]\(r\)[/tex]:
[tex]\[ 2r = 36 \][/tex]
Dividing both sides by 2, we get:
[tex]\[ r = \frac{36}{2} = 18 \][/tex]
Therefore, the value of [tex]\(r\)[/tex] when [tex]\(q = 4\)[/tex] is [tex]\(18\)[/tex].
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.