Westonci.ca is the ultimate Q&A platform, offering detailed and reliable answers from a knowledgeable community. Our platform provides a seamless experience for finding precise answers from a network of experienced professionals. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
Of course! Let's solve this step by step.
1. Understand the Relationships:
- We're told that the resistance of a wire varies directly with its length and inversely with its cross-sectional area.
- Mathematically, we can express this relationship as [tex]\( R = k \frac{L}{A} \)[/tex], where [tex]\( R \)[/tex] is the resistance, [tex]\( L \)[/tex] is the length, [tex]\( A \)[/tex] is the cross-sectional area, and [tex]\( k \)[/tex] is a constant of proportionality.
2. Use Given Values to Determine the Constant [tex]\( k \)[/tex] for the Material:
- For the first wire:
- Length [tex]\( L_1 = 100 \)[/tex] meters
- Cross-sectional area [tex]\( A_1 = 1 \)[/tex] square millimeter
- Resistance [tex]\( R_1 = 2 \)[/tex] ohms
- Substitute these values into the relationship to find [tex]\( k \)[/tex]:
[tex]\[ 2 = k \frac{100}{1} \][/tex]
- Solving for [tex]\( k \)[/tex]:
[tex]\[ k = \frac{2 \times 1}{100} = 0.02 \][/tex]
3. Find the Resistance of the Second Wire Using the Same Constant [tex]\( k \)[/tex]:
- For the second wire:
- Length [tex]\( L_2 = 250 \)[/tex] meters
- Cross-sectional area [tex]\( A_2 = 0.5 \)[/tex] square millimeters
- Using the relationship [tex]\( R = k \frac{L}{A} \)[/tex]:
[tex]\[ R_2 = 0.02 \times \frac{250}{0.5} \][/tex]
4. Calculate the Resistance:
[tex]\[ R_2 = 0.02 \times \frac{250}{0.5} = 0.02 \times 500 = 10 \text{ ohms} \][/tex]
Therefore, the resistance of a wire of the same material that is 250 meters long with a cross-sectional area of 0.5 square millimeters would be 10 ohms.
1. Understand the Relationships:
- We're told that the resistance of a wire varies directly with its length and inversely with its cross-sectional area.
- Mathematically, we can express this relationship as [tex]\( R = k \frac{L}{A} \)[/tex], where [tex]\( R \)[/tex] is the resistance, [tex]\( L \)[/tex] is the length, [tex]\( A \)[/tex] is the cross-sectional area, and [tex]\( k \)[/tex] is a constant of proportionality.
2. Use Given Values to Determine the Constant [tex]\( k \)[/tex] for the Material:
- For the first wire:
- Length [tex]\( L_1 = 100 \)[/tex] meters
- Cross-sectional area [tex]\( A_1 = 1 \)[/tex] square millimeter
- Resistance [tex]\( R_1 = 2 \)[/tex] ohms
- Substitute these values into the relationship to find [tex]\( k \)[/tex]:
[tex]\[ 2 = k \frac{100}{1} \][/tex]
- Solving for [tex]\( k \)[/tex]:
[tex]\[ k = \frac{2 \times 1}{100} = 0.02 \][/tex]
3. Find the Resistance of the Second Wire Using the Same Constant [tex]\( k \)[/tex]:
- For the second wire:
- Length [tex]\( L_2 = 250 \)[/tex] meters
- Cross-sectional area [tex]\( A_2 = 0.5 \)[/tex] square millimeters
- Using the relationship [tex]\( R = k \frac{L}{A} \)[/tex]:
[tex]\[ R_2 = 0.02 \times \frac{250}{0.5} \][/tex]
4. Calculate the Resistance:
[tex]\[ R_2 = 0.02 \times \frac{250}{0.5} = 0.02 \times 500 = 10 \text{ ohms} \][/tex]
Therefore, the resistance of a wire of the same material that is 250 meters long with a cross-sectional area of 0.5 square millimeters would be 10 ohms.
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.