Discover answers to your most pressing questions at Westonci.ca, the ultimate Q&A platform that connects you with expert solutions. Get immediate answers to your questions from a wide network of experienced professionals on our Q&A platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
Sure! Let's solve each part of the question step by step.
### Part (i)
We need to find the value of [tex]\(\sin^2 45^\circ + \cos^2 60^\circ\)[/tex].
First, let's find [tex]\(\sin 45^\circ\)[/tex] and [tex]\(\cos 60^\circ\)[/tex]:
[tex]\[ \sin 45^\circ = \frac{\sqrt{2}}{2}, \quad \cos 60^\circ = \frac{1}{2} \][/tex]
Now square these values:
[tex]\[ \sin^2 45^\circ = \left(\frac{\sqrt{2}}{2}\right)^2 = \frac{2}{4} = \frac{1}{2}, \quad \cos^2 60^\circ = \left(\frac{1}{2}\right)^2 = \frac{1}{4} \][/tex]
Add these squares together:
[tex]\[ \sin^2 45^\circ + \cos^2 60^\circ = \frac{1}{2} + \frac{1}{4} = \frac{2}{4} + \frac{1}{4} = \frac{3}{4} \][/tex]
So, the exact value of [tex]\(\sin^2 45^\circ + \cos^2 60^\circ\)[/tex] is [tex]\(\frac{3}{4}\)[/tex].
### Part (ii)
We need to find the value of [tex]\(\sin \frac{\pi}{3} + \cos \frac{\pi}{6}\)[/tex].
First, let's find [tex]\(\sin \frac{\pi}{3}\)[/tex] and [tex]\(\cos \frac{\pi}{6}\)[/tex]:
[tex]\[ \sin \frac{\pi}{3} = \frac{\sqrt{3}}{2}, \quad \cos \frac{\pi}{6} = \frac{\sqrt{3}}{2} \][/tex]
Add these values together:
[tex]\[ \sin \frac{\pi}{3} + \cos \frac{\pi}{6} = \frac{\sqrt{3}}{2} + \frac{\sqrt{3}}{2} = \frac{2\sqrt{3}}{2} = \sqrt{3} \][/tex]
So, the exact value of [tex]\(\sin \frac{\pi}{3} + \cos \frac{\pi}{6}\)[/tex] is [tex]\(\sqrt{3}\)[/tex].
### Part (iii)
We need to find the value of [tex]\(\csc \frac{\pi}{6} + \sec \frac{\pi}{3}\)[/tex].
First, let's find [tex]\(\csc \frac{\pi}{6}\)[/tex] and [tex]\(\sec \frac{\pi}{3}\)[/tex]:
[tex]\[ \csc \frac{\pi}{6} = \frac{1}{\sin \frac{\pi}{6}}, \quad \sec \frac{\pi}{3} = \frac{1}{\cos \frac{\pi}{3}} \][/tex]
[tex]\[ \sin \frac{\pi}{6} = \frac{1}{2}, \quad \cos \frac{\pi}{3} = \frac{1}{2} \][/tex]
[tex]\[ \csc \frac{\pi}{6} = \frac{1}{\frac{1}{2}} = 2, \quad \sec \frac{\pi}{3} = \frac{1}{\frac{1}{2}} = 2 \][/tex]
Add these values together:
[tex]\[ \csc \frac{\pi}{6} + \sec \frac{\pi}{3} = 2 + 2 = 4 \][/tex]
So, the exact value of [tex]\(\csc \frac{\pi}{6} + \sec \frac{\pi}{3}\)[/tex] is [tex]\(4\)[/tex].
### Proof
We need to show that [tex]\(\sin 60^\circ \cos 30^\circ + \cos 60^\circ \sin 30^\circ = 1\)[/tex].
First, let's find the values involved:
[tex]\[ \sin 60^\circ = \frac{\sqrt{3}}{2}, \quad \cos 30^\circ = \frac{\sqrt{3}}{2}, \quad \cos 60^\circ = \frac{1}{2}, \quad \sin 30^\circ = \frac{1}{2} \][/tex]
Now, use these values to calculate the expression:
[tex]\[ \sin 60^\circ \cos 30^\circ + \cos 60^\circ \sin 30^\circ = \left(\frac{\sqrt{3}}{2} \cdot \frac{\sqrt{3}}{2}\right) + \left(\frac{1}{2} \cdot \frac{1}{2}\right) \][/tex]
[tex]\[ = \frac{3}{4} + \frac{1}{4} = \frac{4}{4} = 1 \][/tex]
Thus, [tex]\(\sin 60^\circ \cos 30^\circ + \cos 60^\circ \sin 30^\circ = 1\)[/tex] is indeed true.
So, we've verified this identity successfully.
### Part (i)
We need to find the value of [tex]\(\sin^2 45^\circ + \cos^2 60^\circ\)[/tex].
First, let's find [tex]\(\sin 45^\circ\)[/tex] and [tex]\(\cos 60^\circ\)[/tex]:
[tex]\[ \sin 45^\circ = \frac{\sqrt{2}}{2}, \quad \cos 60^\circ = \frac{1}{2} \][/tex]
Now square these values:
[tex]\[ \sin^2 45^\circ = \left(\frac{\sqrt{2}}{2}\right)^2 = \frac{2}{4} = \frac{1}{2}, \quad \cos^2 60^\circ = \left(\frac{1}{2}\right)^2 = \frac{1}{4} \][/tex]
Add these squares together:
[tex]\[ \sin^2 45^\circ + \cos^2 60^\circ = \frac{1}{2} + \frac{1}{4} = \frac{2}{4} + \frac{1}{4} = \frac{3}{4} \][/tex]
So, the exact value of [tex]\(\sin^2 45^\circ + \cos^2 60^\circ\)[/tex] is [tex]\(\frac{3}{4}\)[/tex].
### Part (ii)
We need to find the value of [tex]\(\sin \frac{\pi}{3} + \cos \frac{\pi}{6}\)[/tex].
First, let's find [tex]\(\sin \frac{\pi}{3}\)[/tex] and [tex]\(\cos \frac{\pi}{6}\)[/tex]:
[tex]\[ \sin \frac{\pi}{3} = \frac{\sqrt{3}}{2}, \quad \cos \frac{\pi}{6} = \frac{\sqrt{3}}{2} \][/tex]
Add these values together:
[tex]\[ \sin \frac{\pi}{3} + \cos \frac{\pi}{6} = \frac{\sqrt{3}}{2} + \frac{\sqrt{3}}{2} = \frac{2\sqrt{3}}{2} = \sqrt{3} \][/tex]
So, the exact value of [tex]\(\sin \frac{\pi}{3} + \cos \frac{\pi}{6}\)[/tex] is [tex]\(\sqrt{3}\)[/tex].
### Part (iii)
We need to find the value of [tex]\(\csc \frac{\pi}{6} + \sec \frac{\pi}{3}\)[/tex].
First, let's find [tex]\(\csc \frac{\pi}{6}\)[/tex] and [tex]\(\sec \frac{\pi}{3}\)[/tex]:
[tex]\[ \csc \frac{\pi}{6} = \frac{1}{\sin \frac{\pi}{6}}, \quad \sec \frac{\pi}{3} = \frac{1}{\cos \frac{\pi}{3}} \][/tex]
[tex]\[ \sin \frac{\pi}{6} = \frac{1}{2}, \quad \cos \frac{\pi}{3} = \frac{1}{2} \][/tex]
[tex]\[ \csc \frac{\pi}{6} = \frac{1}{\frac{1}{2}} = 2, \quad \sec \frac{\pi}{3} = \frac{1}{\frac{1}{2}} = 2 \][/tex]
Add these values together:
[tex]\[ \csc \frac{\pi}{6} + \sec \frac{\pi}{3} = 2 + 2 = 4 \][/tex]
So, the exact value of [tex]\(\csc \frac{\pi}{6} + \sec \frac{\pi}{3}\)[/tex] is [tex]\(4\)[/tex].
### Proof
We need to show that [tex]\(\sin 60^\circ \cos 30^\circ + \cos 60^\circ \sin 30^\circ = 1\)[/tex].
First, let's find the values involved:
[tex]\[ \sin 60^\circ = \frac{\sqrt{3}}{2}, \quad \cos 30^\circ = \frac{\sqrt{3}}{2}, \quad \cos 60^\circ = \frac{1}{2}, \quad \sin 30^\circ = \frac{1}{2} \][/tex]
Now, use these values to calculate the expression:
[tex]\[ \sin 60^\circ \cos 30^\circ + \cos 60^\circ \sin 30^\circ = \left(\frac{\sqrt{3}}{2} \cdot \frac{\sqrt{3}}{2}\right) + \left(\frac{1}{2} \cdot \frac{1}{2}\right) \][/tex]
[tex]\[ = \frac{3}{4} + \frac{1}{4} = \frac{4}{4} = 1 \][/tex]
Thus, [tex]\(\sin 60^\circ \cos 30^\circ + \cos 60^\circ \sin 30^\circ = 1\)[/tex] is indeed true.
So, we've verified this identity successfully.
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.