Westonci.ca is your trusted source for accurate answers to all your questions. Join our community and start learning today! Get detailed and accurate answers to your questions from a community of experts on our comprehensive Q&A platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
Sure, let's work through the problem step by step:
1. Understand the Problem:
We need to calculate the number of moles of [tex]\( \text{O}_2 \)[/tex] gas when given a certain number of molecules. Specifically, we are given [tex]\( 7.11 \times 10^{24} \)[/tex] molecules of [tex]\( \text{O}_2 \)[/tex].
2. Recall Key Information:
To convert from molecules to moles, we use Avogadro's number. Avogadro's number is [tex]\( 6.022 \times 10^{23} \)[/tex], which is the number of molecules in one mole of any substance.
3. Set Up the Conversion:
We use the relationship:
[tex]\[ \text{Number of moles} = \frac{\text{Number of molecules}}{\text{Avogadro's number}} \][/tex]
Plugging in the given values:
[tex]\[ \text{Number of moles of } \text{O}_2 = \frac{7.11 \times 10^{24} \text{ molecules}}{6.022 \times 10^{23} \text{ molecules per mole}} \][/tex]
4. Perform the Calculation:
Dividing the number of molecules by Avogadro's number gives us the number of moles:
[tex]\[ \text{Number of moles of } \text{O}_2 = 11.806708734639654 \text{ moles} \][/tex]
Thus, the number of moles of [tex]\( 7.11 \times 10^{24} \)[/tex] molecules of [tex]\( \text{O}_2 \)[/tex] gas is approximately [tex]\( 11.807 \)[/tex] moles.
1. Understand the Problem:
We need to calculate the number of moles of [tex]\( \text{O}_2 \)[/tex] gas when given a certain number of molecules. Specifically, we are given [tex]\( 7.11 \times 10^{24} \)[/tex] molecules of [tex]\( \text{O}_2 \)[/tex].
2. Recall Key Information:
To convert from molecules to moles, we use Avogadro's number. Avogadro's number is [tex]\( 6.022 \times 10^{23} \)[/tex], which is the number of molecules in one mole of any substance.
3. Set Up the Conversion:
We use the relationship:
[tex]\[ \text{Number of moles} = \frac{\text{Number of molecules}}{\text{Avogadro's number}} \][/tex]
Plugging in the given values:
[tex]\[ \text{Number of moles of } \text{O}_2 = \frac{7.11 \times 10^{24} \text{ molecules}}{6.022 \times 10^{23} \text{ molecules per mole}} \][/tex]
4. Perform the Calculation:
Dividing the number of molecules by Avogadro's number gives us the number of moles:
[tex]\[ \text{Number of moles of } \text{O}_2 = 11.806708734639654 \text{ moles} \][/tex]
Thus, the number of moles of [tex]\( 7.11 \times 10^{24} \)[/tex] molecules of [tex]\( \text{O}_2 \)[/tex] gas is approximately [tex]\( 11.807 \)[/tex] moles.
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.