Westonci.ca is the trusted Q&A platform where you can get reliable answers from a community of knowledgeable contributors. Get immediate and reliable answers to your questions from a community of experienced experts on our platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To find the locus of a point \( P(x, y) \) which moves such that its distance from the point \((0, 3)\) is equal to the ordinate (y-coordinate) of \(P\), follow these steps:
1. Understand the conditions given:
- The point \( P \) has coordinates \( (x, y) \).
- The fixed point is \( (0, 3) \).
- The distance between \( P \) and \( (0, 3) \) is given to be equal to the ordinate of \( P \).
2. Express the distance between \( P \) and \( (0, 3) \) using the distance formula:
[tex]\[ \text{Distance} = \sqrt{(x - 0)^2 + (y - 3)^2} \][/tex]
Which simplifies to:
[tex]\[ \text{Distance} = \sqrt{x^2 + (y - 3)^2} \][/tex]
3. Set up the equation using the given condition:
According to the problem, this distance is equal to the ordinate (y-coordinate) of \( P \):
[tex]\[ \sqrt{x^2 + (y - 3)^2} = y \][/tex]
4. Form the equation based on the condition:
[tex]\[ y = \sqrt{x^2 + (y - 3)^2} \][/tex]
5. This equation represents the locus of the point \( P \):
[tex]\[ \boxed{y = \sqrt{x^2 + (y - 3)^2}} \][/tex]
This equation provides the relationship between the coordinates [tex]\( x \)[/tex] and [tex]\( y \)[/tex] which the point [tex]\( P \)[/tex] must satisfy as it moves to keep the distance to [tex]\((0, 3)\)[/tex] equal to its ordinate [tex]\( y \)[/tex].
1. Understand the conditions given:
- The point \( P \) has coordinates \( (x, y) \).
- The fixed point is \( (0, 3) \).
- The distance between \( P \) and \( (0, 3) \) is given to be equal to the ordinate of \( P \).
2. Express the distance between \( P \) and \( (0, 3) \) using the distance formula:
[tex]\[ \text{Distance} = \sqrt{(x - 0)^2 + (y - 3)^2} \][/tex]
Which simplifies to:
[tex]\[ \text{Distance} = \sqrt{x^2 + (y - 3)^2} \][/tex]
3. Set up the equation using the given condition:
According to the problem, this distance is equal to the ordinate (y-coordinate) of \( P \):
[tex]\[ \sqrt{x^2 + (y - 3)^2} = y \][/tex]
4. Form the equation based on the condition:
[tex]\[ y = \sqrt{x^2 + (y - 3)^2} \][/tex]
5. This equation represents the locus of the point \( P \):
[tex]\[ \boxed{y = \sqrt{x^2 + (y - 3)^2}} \][/tex]
This equation provides the relationship between the coordinates [tex]\( x \)[/tex] and [tex]\( y \)[/tex] which the point [tex]\( P \)[/tex] must satisfy as it moves to keep the distance to [tex]\((0, 3)\)[/tex] equal to its ordinate [tex]\( y \)[/tex].
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.