Welcome to Westonci.ca, where you can find answers to all your questions from a community of experienced professionals. Our Q&A platform provides quick and trustworthy answers to your questions from experienced professionals in different areas of expertise. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To find the locus of a point \( P(x, y) \) which moves such that its distance from the point \((0, 3)\) is equal to the ordinate (y-coordinate) of \(P\), follow these steps:
1. Understand the conditions given:
- The point \( P \) has coordinates \( (x, y) \).
- The fixed point is \( (0, 3) \).
- The distance between \( P \) and \( (0, 3) \) is given to be equal to the ordinate of \( P \).
2. Express the distance between \( P \) and \( (0, 3) \) using the distance formula:
[tex]\[ \text{Distance} = \sqrt{(x - 0)^2 + (y - 3)^2} \][/tex]
Which simplifies to:
[tex]\[ \text{Distance} = \sqrt{x^2 + (y - 3)^2} \][/tex]
3. Set up the equation using the given condition:
According to the problem, this distance is equal to the ordinate (y-coordinate) of \( P \):
[tex]\[ \sqrt{x^2 + (y - 3)^2} = y \][/tex]
4. Form the equation based on the condition:
[tex]\[ y = \sqrt{x^2 + (y - 3)^2} \][/tex]
5. This equation represents the locus of the point \( P \):
[tex]\[ \boxed{y = \sqrt{x^2 + (y - 3)^2}} \][/tex]
This equation provides the relationship between the coordinates [tex]\( x \)[/tex] and [tex]\( y \)[/tex] which the point [tex]\( P \)[/tex] must satisfy as it moves to keep the distance to [tex]\((0, 3)\)[/tex] equal to its ordinate [tex]\( y \)[/tex].
1. Understand the conditions given:
- The point \( P \) has coordinates \( (x, y) \).
- The fixed point is \( (0, 3) \).
- The distance between \( P \) and \( (0, 3) \) is given to be equal to the ordinate of \( P \).
2. Express the distance between \( P \) and \( (0, 3) \) using the distance formula:
[tex]\[ \text{Distance} = \sqrt{(x - 0)^2 + (y - 3)^2} \][/tex]
Which simplifies to:
[tex]\[ \text{Distance} = \sqrt{x^2 + (y - 3)^2} \][/tex]
3. Set up the equation using the given condition:
According to the problem, this distance is equal to the ordinate (y-coordinate) of \( P \):
[tex]\[ \sqrt{x^2 + (y - 3)^2} = y \][/tex]
4. Form the equation based on the condition:
[tex]\[ y = \sqrt{x^2 + (y - 3)^2} \][/tex]
5. This equation represents the locus of the point \( P \):
[tex]\[ \boxed{y = \sqrt{x^2 + (y - 3)^2}} \][/tex]
This equation provides the relationship between the coordinates [tex]\( x \)[/tex] and [tex]\( y \)[/tex] which the point [tex]\( P \)[/tex] must satisfy as it moves to keep the distance to [tex]\((0, 3)\)[/tex] equal to its ordinate [tex]\( y \)[/tex].
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.