Get the answers you need at Westonci.ca, where our expert community is always ready to help with accurate information. Get immediate and reliable answers to your questions from a community of experienced experts on our platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To determine the domain of the function \( y = \sqrt{x} + 4 \), we need to establish the set of all possible values for \( x \) that will make the function well-defined.
1. The function \( y \) consists of the square root of \( x \) plus 4.
2. To ensure that the square root is defined, the expression inside the square root, \( x \), must be non-negative. In other words, we require:
[tex]\[ x \geq 0 \][/tex]
By analyzing this condition, we can conclude that \( x \) needs to be greater than or equal to 0. This means that the variable \( x \) can take any value starting from 0 and extending to positive infinity.
Therefore, the domain of the function \( y = \sqrt{x} + 4 \) is:
[tex]\[ 0 \leq x < \infty \][/tex]
Among the given choices:
1. \(-\infty < x < \infty\) — Incorrect, as \( x \) cannot take negative values due to the square root.
2. \(-4 \leq x < \infty\) — Incorrect, as \( x \) starting from -4 does not make sense for a square root function.
3. \( 0 \leq x < \infty \) — Correct, as it matches the requirement for the square root function.
4. \( 4 \leq x < \infty \) — Incorrect, as it unnecessarily restricts \( x \) to start from 4.
Thus, the correct domain is \( 0 \leq x < \infty \), which corresponds to the third given option.
So, the answer is:
[tex]\[ \boxed{3} \][/tex]
1. The function \( y \) consists of the square root of \( x \) plus 4.
2. To ensure that the square root is defined, the expression inside the square root, \( x \), must be non-negative. In other words, we require:
[tex]\[ x \geq 0 \][/tex]
By analyzing this condition, we can conclude that \( x \) needs to be greater than or equal to 0. This means that the variable \( x \) can take any value starting from 0 and extending to positive infinity.
Therefore, the domain of the function \( y = \sqrt{x} + 4 \) is:
[tex]\[ 0 \leq x < \infty \][/tex]
Among the given choices:
1. \(-\infty < x < \infty\) — Incorrect, as \( x \) cannot take negative values due to the square root.
2. \(-4 \leq x < \infty\) — Incorrect, as \( x \) starting from -4 does not make sense for a square root function.
3. \( 0 \leq x < \infty \) — Correct, as it matches the requirement for the square root function.
4. \( 4 \leq x < \infty \) — Incorrect, as it unnecessarily restricts \( x \) to start from 4.
Thus, the correct domain is \( 0 \leq x < \infty \), which corresponds to the third given option.
So, the answer is:
[tex]\[ \boxed{3} \][/tex]
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.