Discover a world of knowledge at Westonci.ca, where experts and enthusiasts come together to answer your questions. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To address this question, we need to use the dilution formula, which is given by:
[tex]\[ M_j V_j = M_f V_f \][/tex]
where:
- \( M_j \) is the initial concentration (or molarity) of the stock solution,
- \( V_j \) is the initial volume of the stock solution required,
- \( M_f \) is the final concentration (or molarity) of the desired solution,
- \( V_f \) is the final volume of the desired solution.
Given values:
- \( M_f = 2.50 \, M \) (final concentration)
- \( V_f = 50.0 \, mL \) (final volume)
- \( M_j = 18.0 \, M \) (initial concentration of the stock solution)
We need to find \( V_j \), the volume of the stock solution required.
Starting with the given formula:
[tex]\[ M_j V_j = M_f V_f \][/tex]
Plug in the known values:
[tex]\[ 18.0 \, M \times V_j = 2.50 \, M \times 50.0 \, mL \][/tex]
First, calculate the product on the right-hand side:
[tex]\[ 2.50 \, M \times 50.0 \, mL = 125.0 \, M \cdot mL \][/tex]
Now, solve for \( V_j \):
[tex]\[ V_j = \frac{125.0 \, M \cdot mL}{18.0 \, M} \][/tex]
[tex]\[ V_j \approx 6.944444444444445 \, mL \][/tex]
Thus, the volume of the stock solution required is approximately \( 6.94 \, mL \).
Among the options given, the best match for our calculation is:
[tex]\[ \boxed{6.94 \, mL} \][/tex]
[tex]\[ M_j V_j = M_f V_f \][/tex]
where:
- \( M_j \) is the initial concentration (or molarity) of the stock solution,
- \( V_j \) is the initial volume of the stock solution required,
- \( M_f \) is the final concentration (or molarity) of the desired solution,
- \( V_f \) is the final volume of the desired solution.
Given values:
- \( M_f = 2.50 \, M \) (final concentration)
- \( V_f = 50.0 \, mL \) (final volume)
- \( M_j = 18.0 \, M \) (initial concentration of the stock solution)
We need to find \( V_j \), the volume of the stock solution required.
Starting with the given formula:
[tex]\[ M_j V_j = M_f V_f \][/tex]
Plug in the known values:
[tex]\[ 18.0 \, M \times V_j = 2.50 \, M \times 50.0 \, mL \][/tex]
First, calculate the product on the right-hand side:
[tex]\[ 2.50 \, M \times 50.0 \, mL = 125.0 \, M \cdot mL \][/tex]
Now, solve for \( V_j \):
[tex]\[ V_j = \frac{125.0 \, M \cdot mL}{18.0 \, M} \][/tex]
[tex]\[ V_j \approx 6.944444444444445 \, mL \][/tex]
Thus, the volume of the stock solution required is approximately \( 6.94 \, mL \).
Among the options given, the best match for our calculation is:
[tex]\[ \boxed{6.94 \, mL} \][/tex]
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.