Welcome to Westonci.ca, where finding answers to your questions is made simple by our community of experts. Get detailed answers to your questions from a community of experts dedicated to providing accurate information. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To address this question, we need to use the dilution formula, which is given by:
[tex]\[ M_j V_j = M_f V_f \][/tex]
where:
- \( M_j \) is the initial concentration (or molarity) of the stock solution,
- \( V_j \) is the initial volume of the stock solution required,
- \( M_f \) is the final concentration (or molarity) of the desired solution,
- \( V_f \) is the final volume of the desired solution.
Given values:
- \( M_f = 2.50 \, M \) (final concentration)
- \( V_f = 50.0 \, mL \) (final volume)
- \( M_j = 18.0 \, M \) (initial concentration of the stock solution)
We need to find \( V_j \), the volume of the stock solution required.
Starting with the given formula:
[tex]\[ M_j V_j = M_f V_f \][/tex]
Plug in the known values:
[tex]\[ 18.0 \, M \times V_j = 2.50 \, M \times 50.0 \, mL \][/tex]
First, calculate the product on the right-hand side:
[tex]\[ 2.50 \, M \times 50.0 \, mL = 125.0 \, M \cdot mL \][/tex]
Now, solve for \( V_j \):
[tex]\[ V_j = \frac{125.0 \, M \cdot mL}{18.0 \, M} \][/tex]
[tex]\[ V_j \approx 6.944444444444445 \, mL \][/tex]
Thus, the volume of the stock solution required is approximately \( 6.94 \, mL \).
Among the options given, the best match for our calculation is:
[tex]\[ \boxed{6.94 \, mL} \][/tex]
[tex]\[ M_j V_j = M_f V_f \][/tex]
where:
- \( M_j \) is the initial concentration (or molarity) of the stock solution,
- \( V_j \) is the initial volume of the stock solution required,
- \( M_f \) is the final concentration (or molarity) of the desired solution,
- \( V_f \) is the final volume of the desired solution.
Given values:
- \( M_f = 2.50 \, M \) (final concentration)
- \( V_f = 50.0 \, mL \) (final volume)
- \( M_j = 18.0 \, M \) (initial concentration of the stock solution)
We need to find \( V_j \), the volume of the stock solution required.
Starting with the given formula:
[tex]\[ M_j V_j = M_f V_f \][/tex]
Plug in the known values:
[tex]\[ 18.0 \, M \times V_j = 2.50 \, M \times 50.0 \, mL \][/tex]
First, calculate the product on the right-hand side:
[tex]\[ 2.50 \, M \times 50.0 \, mL = 125.0 \, M \cdot mL \][/tex]
Now, solve for \( V_j \):
[tex]\[ V_j = \frac{125.0 \, M \cdot mL}{18.0 \, M} \][/tex]
[tex]\[ V_j \approx 6.944444444444445 \, mL \][/tex]
Thus, the volume of the stock solution required is approximately \( 6.94 \, mL \).
Among the options given, the best match for our calculation is:
[tex]\[ \boxed{6.94 \, mL} \][/tex]
We hope this was helpful. Please come back whenever you need more information or answers to your queries. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.