Welcome to Westonci.ca, where you can find answers to all your questions from a community of experienced professionals. Experience the ease of finding quick and accurate answers to your questions from professionals on our platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To address this question, we need to use the dilution formula, which is given by:
[tex]\[ M_j V_j = M_f V_f \][/tex]
where:
- \( M_j \) is the initial concentration (or molarity) of the stock solution,
- \( V_j \) is the initial volume of the stock solution required,
- \( M_f \) is the final concentration (or molarity) of the desired solution,
- \( V_f \) is the final volume of the desired solution.
Given values:
- \( M_f = 2.50 \, M \) (final concentration)
- \( V_f = 50.0 \, mL \) (final volume)
- \( M_j = 18.0 \, M \) (initial concentration of the stock solution)
We need to find \( V_j \), the volume of the stock solution required.
Starting with the given formula:
[tex]\[ M_j V_j = M_f V_f \][/tex]
Plug in the known values:
[tex]\[ 18.0 \, M \times V_j = 2.50 \, M \times 50.0 \, mL \][/tex]
First, calculate the product on the right-hand side:
[tex]\[ 2.50 \, M \times 50.0 \, mL = 125.0 \, M \cdot mL \][/tex]
Now, solve for \( V_j \):
[tex]\[ V_j = \frac{125.0 \, M \cdot mL}{18.0 \, M} \][/tex]
[tex]\[ V_j \approx 6.944444444444445 \, mL \][/tex]
Thus, the volume of the stock solution required is approximately \( 6.94 \, mL \).
Among the options given, the best match for our calculation is:
[tex]\[ \boxed{6.94 \, mL} \][/tex]
[tex]\[ M_j V_j = M_f V_f \][/tex]
where:
- \( M_j \) is the initial concentration (or molarity) of the stock solution,
- \( V_j \) is the initial volume of the stock solution required,
- \( M_f \) is the final concentration (or molarity) of the desired solution,
- \( V_f \) is the final volume of the desired solution.
Given values:
- \( M_f = 2.50 \, M \) (final concentration)
- \( V_f = 50.0 \, mL \) (final volume)
- \( M_j = 18.0 \, M \) (initial concentration of the stock solution)
We need to find \( V_j \), the volume of the stock solution required.
Starting with the given formula:
[tex]\[ M_j V_j = M_f V_f \][/tex]
Plug in the known values:
[tex]\[ 18.0 \, M \times V_j = 2.50 \, M \times 50.0 \, mL \][/tex]
First, calculate the product on the right-hand side:
[tex]\[ 2.50 \, M \times 50.0 \, mL = 125.0 \, M \cdot mL \][/tex]
Now, solve for \( V_j \):
[tex]\[ V_j = \frac{125.0 \, M \cdot mL}{18.0 \, M} \][/tex]
[tex]\[ V_j \approx 6.944444444444445 \, mL \][/tex]
Thus, the volume of the stock solution required is approximately \( 6.94 \, mL \).
Among the options given, the best match for our calculation is:
[tex]\[ \boxed{6.94 \, mL} \][/tex]
We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.