Westonci.ca offers fast, accurate answers to your questions. Join our community and get the insights you need now. Get expert answers to your questions quickly and accurately from our dedicated community of professionals. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To address this question, we need to use the dilution formula, which is given by:
[tex]\[ M_j V_j = M_f V_f \][/tex]
where:
- \( M_j \) is the initial concentration (or molarity) of the stock solution,
- \( V_j \) is the initial volume of the stock solution required,
- \( M_f \) is the final concentration (or molarity) of the desired solution,
- \( V_f \) is the final volume of the desired solution.
Given values:
- \( M_f = 2.50 \, M \) (final concentration)
- \( V_f = 50.0 \, mL \) (final volume)
- \( M_j = 18.0 \, M \) (initial concentration of the stock solution)
We need to find \( V_j \), the volume of the stock solution required.
Starting with the given formula:
[tex]\[ M_j V_j = M_f V_f \][/tex]
Plug in the known values:
[tex]\[ 18.0 \, M \times V_j = 2.50 \, M \times 50.0 \, mL \][/tex]
First, calculate the product on the right-hand side:
[tex]\[ 2.50 \, M \times 50.0 \, mL = 125.0 \, M \cdot mL \][/tex]
Now, solve for \( V_j \):
[tex]\[ V_j = \frac{125.0 \, M \cdot mL}{18.0 \, M} \][/tex]
[tex]\[ V_j \approx 6.944444444444445 \, mL \][/tex]
Thus, the volume of the stock solution required is approximately \( 6.94 \, mL \).
Among the options given, the best match for our calculation is:
[tex]\[ \boxed{6.94 \, mL} \][/tex]
[tex]\[ M_j V_j = M_f V_f \][/tex]
where:
- \( M_j \) is the initial concentration (or molarity) of the stock solution,
- \( V_j \) is the initial volume of the stock solution required,
- \( M_f \) is the final concentration (or molarity) of the desired solution,
- \( V_f \) is the final volume of the desired solution.
Given values:
- \( M_f = 2.50 \, M \) (final concentration)
- \( V_f = 50.0 \, mL \) (final volume)
- \( M_j = 18.0 \, M \) (initial concentration of the stock solution)
We need to find \( V_j \), the volume of the stock solution required.
Starting with the given formula:
[tex]\[ M_j V_j = M_f V_f \][/tex]
Plug in the known values:
[tex]\[ 18.0 \, M \times V_j = 2.50 \, M \times 50.0 \, mL \][/tex]
First, calculate the product on the right-hand side:
[tex]\[ 2.50 \, M \times 50.0 \, mL = 125.0 \, M \cdot mL \][/tex]
Now, solve for \( V_j \):
[tex]\[ V_j = \frac{125.0 \, M \cdot mL}{18.0 \, M} \][/tex]
[tex]\[ V_j \approx 6.944444444444445 \, mL \][/tex]
Thus, the volume of the stock solution required is approximately \( 6.94 \, mL \).
Among the options given, the best match for our calculation is:
[tex]\[ \boxed{6.94 \, mL} \][/tex]
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.