Discover a wealth of knowledge at Westonci.ca, where experts provide answers to your most pressing questions. Get detailed answers to your questions from a community of experts dedicated to providing accurate information. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To determine the mass of sodium nitrate (\(NaNO_3\)) needed to make a 4.50 L solution with a molarity of 1.50 M, we will follow these steps:
1. Calculate the moles of \(NaNO_3\) using the molarity formula:
[tex]\[ \text{Molarity (M)} = \frac{\text{moles of solute}}{\text{liters of solution}} \][/tex]
Rearranging this formula to solve for moles of solute, we get:
[tex]\[ \text{moles of solute} = \text{Molarity (M)} \times \text{liters of solution} \][/tex]
Given:
- Molarity (\(M\)) = 1.50 \(M\)
- Volume of solution (liters) = 4.50 \(L\)
Plugging in the values:
[tex]\[ \text{moles of } NaNO_3 = 1.50 \, M \times 4.50 \, L = 6.75 \, \text{moles} \][/tex]
2. Calculate the mass of \(NaNO_3\) using its molar mass:
[tex]\[ \text{mass (g)} = \text{moles} \times \text{molar mass (g/mol)} \][/tex]
Given:
- Moles of \(NaNO_3\) = 6.75 moles
- Molar mass of \(NaNO_3\) = 85.00 \(g/mol\)
Plugging in the values:
[tex]\[ \text{mass of } NaNO_3 = 6.75 \, \text{moles} \times 85.00 \, \frac{\text{g}}{\text{mol}} = 573.75 \, \text{g} \][/tex]
Therefore, the mass of \(NaNO_3\) needed is approximately \(574 \, g\). The correct answer from the given options is:
[tex]\(574 \, g\)[/tex]
1. Calculate the moles of \(NaNO_3\) using the molarity formula:
[tex]\[ \text{Molarity (M)} = \frac{\text{moles of solute}}{\text{liters of solution}} \][/tex]
Rearranging this formula to solve for moles of solute, we get:
[tex]\[ \text{moles of solute} = \text{Molarity (M)} \times \text{liters of solution} \][/tex]
Given:
- Molarity (\(M\)) = 1.50 \(M\)
- Volume of solution (liters) = 4.50 \(L\)
Plugging in the values:
[tex]\[ \text{moles of } NaNO_3 = 1.50 \, M \times 4.50 \, L = 6.75 \, \text{moles} \][/tex]
2. Calculate the mass of \(NaNO_3\) using its molar mass:
[tex]\[ \text{mass (g)} = \text{moles} \times \text{molar mass (g/mol)} \][/tex]
Given:
- Moles of \(NaNO_3\) = 6.75 moles
- Molar mass of \(NaNO_3\) = 85.00 \(g/mol\)
Plugging in the values:
[tex]\[ \text{mass of } NaNO_3 = 6.75 \, \text{moles} \times 85.00 \, \frac{\text{g}}{\text{mol}} = 573.75 \, \text{g} \][/tex]
Therefore, the mass of \(NaNO_3\) needed is approximately \(574 \, g\). The correct answer from the given options is:
[tex]\(574 \, g\)[/tex]
We appreciate your time. Please come back anytime for the latest information and answers to your questions. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.