Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Join our platform to connect with experts ready to provide precise answers to your questions in various areas. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To solve this problem, we will approach it in two parts, as there are two distinct loci to find.
### Part 1: Locus Equidistant from Points \((-1, -1)\) and \((4, 2)\)
1. Identify the general problem:
- We need to find the set of points \((x, y)\) that are equidistant from both \((-1, -1)\) and \((4, 2)\).
2. Use the distance formula:
- The distance from any point \((x, y)\) to \((-1, -1)\) is \(\sqrt{(x - (-1))^2 + (y - (-1))^2} = \sqrt{(x + 1)^2 + (y + 1)^2}\).
- The distance from any point \((x, y)\) to \((4, 2)\) is \(\sqrt{(x - 4)^2 + (y - 2)^2}\).
3. Set up the equation:
- These two distances must be equal, resulting in the equation:
[tex]\[ \sqrt{(x + 1)^2 + (y + 1)^2} = \sqrt{(x - 4)^2 + (y - 2)^2} \][/tex]
4. Simplify the equation:
- To eliminate the square roots, square both sides:
[tex]\[ (x + 1)^2 + (y + 1)^2 = (x - 4)^2 + (y - 2)^2 \][/tex]
- Expand both sides of the equation:
[tex]\[ (x^2 + 2x + 1) + (y^2 + 2y + 1) = (x^2 - 8x + 16) + (y^2 - 4y + 4) \][/tex]
- Combine like terms:
[tex]\[ x^2 + 2x + y^2 + 2y + 2 = x^2 - 8x + y^2 - 4y + 20 \][/tex]
- Cancel out similar terms (\(x^2\) and \(y^2\)):
[tex]\[ 2x + 2y + 2 = -8x - 4y + 20 \][/tex]
- Combine all x and y terms on one side and constant terms on the other:
[tex]\[ 2x + 2y + 2 + 8x + 4y = 20 \][/tex]
[tex]\[ 10x + 6y + 2 = 20 \][/tex]
- Simplify to:
[tex]\[ 10x + 6y = 18 \][/tex]
- Divide through by 2 to make it simpler:
[tex]\[ 5x + 3y = 9 \][/tex]
So, the equation of the locus equidistant from \((-1, -1)\) and \((4, 2)\) is:
[tex]\[ 5x + 3y = 9 \][/tex]
### Part 2: Locus Equidistant from Point \((2, 4)\) and the Y-axis
1. Identify the general problem:
- We need to find the set of points \((x, y)\) that are equidistant from \((2, 4)\) and the Y-axis.
2. Use the distance formula:
- The distance from any point \((x, y)\) to \((2, 4)\) is \(\sqrt{(x - 2)^2 + (y - 4)^2}\).
- The distance from any point \((x, y)\) to the Y-axis is \(|x|\).
3. Set up the equation:
- These two distances must be equal, resulting in the equation:
[tex]\[ \sqrt{(x - 2)^2 + (y - 4)^2} = |x| \][/tex]
4. Simplify the equation:
- Square both sides to remove the square root:
[tex]\[ (x - 2)^2 + (y - 4)^2 = x^2 \][/tex]
- Expand and simplify:
[tex]\[ (x^2 - 4x + 4) + (y^2 - 8y + 16) = x^2 \][/tex]
- Combine like terms and simplify:
[tex]\[ x^2 - 4x + 4 + y^2 - 8y + 16 = x^2 \][/tex]
- Cancel out \(x^2\) terms from both sides:
[tex]\[ - 4x + 4 + y^2 - 8y + 16 = 0 \][/tex]
- Further simplify and collect similar terms:
[tex]\[ y^2 - 8y - 4x + 20 = 0 \][/tex]
So, the equation of the locus equidistant from \((2, 4)\) and the Y-axis is:
[tex]\[ y^2 - 8y - 4x + 20 = 0 \][/tex]
### Part 1: Locus Equidistant from Points \((-1, -1)\) and \((4, 2)\)
1. Identify the general problem:
- We need to find the set of points \((x, y)\) that are equidistant from both \((-1, -1)\) and \((4, 2)\).
2. Use the distance formula:
- The distance from any point \((x, y)\) to \((-1, -1)\) is \(\sqrt{(x - (-1))^2 + (y - (-1))^2} = \sqrt{(x + 1)^2 + (y + 1)^2}\).
- The distance from any point \((x, y)\) to \((4, 2)\) is \(\sqrt{(x - 4)^2 + (y - 2)^2}\).
3. Set up the equation:
- These two distances must be equal, resulting in the equation:
[tex]\[ \sqrt{(x + 1)^2 + (y + 1)^2} = \sqrt{(x - 4)^2 + (y - 2)^2} \][/tex]
4. Simplify the equation:
- To eliminate the square roots, square both sides:
[tex]\[ (x + 1)^2 + (y + 1)^2 = (x - 4)^2 + (y - 2)^2 \][/tex]
- Expand both sides of the equation:
[tex]\[ (x^2 + 2x + 1) + (y^2 + 2y + 1) = (x^2 - 8x + 16) + (y^2 - 4y + 4) \][/tex]
- Combine like terms:
[tex]\[ x^2 + 2x + y^2 + 2y + 2 = x^2 - 8x + y^2 - 4y + 20 \][/tex]
- Cancel out similar terms (\(x^2\) and \(y^2\)):
[tex]\[ 2x + 2y + 2 = -8x - 4y + 20 \][/tex]
- Combine all x and y terms on one side and constant terms on the other:
[tex]\[ 2x + 2y + 2 + 8x + 4y = 20 \][/tex]
[tex]\[ 10x + 6y + 2 = 20 \][/tex]
- Simplify to:
[tex]\[ 10x + 6y = 18 \][/tex]
- Divide through by 2 to make it simpler:
[tex]\[ 5x + 3y = 9 \][/tex]
So, the equation of the locus equidistant from \((-1, -1)\) and \((4, 2)\) is:
[tex]\[ 5x + 3y = 9 \][/tex]
### Part 2: Locus Equidistant from Point \((2, 4)\) and the Y-axis
1. Identify the general problem:
- We need to find the set of points \((x, y)\) that are equidistant from \((2, 4)\) and the Y-axis.
2. Use the distance formula:
- The distance from any point \((x, y)\) to \((2, 4)\) is \(\sqrt{(x - 2)^2 + (y - 4)^2}\).
- The distance from any point \((x, y)\) to the Y-axis is \(|x|\).
3. Set up the equation:
- These two distances must be equal, resulting in the equation:
[tex]\[ \sqrt{(x - 2)^2 + (y - 4)^2} = |x| \][/tex]
4. Simplify the equation:
- Square both sides to remove the square root:
[tex]\[ (x - 2)^2 + (y - 4)^2 = x^2 \][/tex]
- Expand and simplify:
[tex]\[ (x^2 - 4x + 4) + (y^2 - 8y + 16) = x^2 \][/tex]
- Combine like terms and simplify:
[tex]\[ x^2 - 4x + 4 + y^2 - 8y + 16 = x^2 \][/tex]
- Cancel out \(x^2\) terms from both sides:
[tex]\[ - 4x + 4 + y^2 - 8y + 16 = 0 \][/tex]
- Further simplify and collect similar terms:
[tex]\[ y^2 - 8y - 4x + 20 = 0 \][/tex]
So, the equation of the locus equidistant from \((2, 4)\) and the Y-axis is:
[tex]\[ y^2 - 8y - 4x + 20 = 0 \][/tex]
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.