Explore Westonci.ca, the top Q&A platform where your questions are answered by professionals and enthusiasts alike. Get immediate and reliable answers to your questions from a community of experienced experts on our platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.

Enter the correct answer in the box.

Use the product of powers property to simplify the numeric expression.

[tex]\[ 4^{\frac{1}{3}} \cdot 4^{\frac{1}{5}} = \][/tex]


Sagot :

Sure! Let's simplify the given expression step-by-step.

We start with the expression:

[tex]\[ 4^{\frac{1}{3}} \cdot 4^{\frac{1}{5}} \][/tex]

1. Use the product of powers property:

This property states that when you multiply two powers with the same base, you add the exponents:

[tex]\[ a^m \cdot a^n = a^{m+n} \][/tex]

Here, our base is 4, and the exponents are \(\frac{1}{3}\) and \(\frac{1}{5}\).

So, we add the exponents:

[tex]\[ \frac{1}{3} + \frac{1}{5} \][/tex]

2. Find a common denominator:

To add \(\frac{1}{3}\) and \(\frac{1}{5}\), we find a common denominator, which is 15:

[tex]\[ \frac{1}{3} = \frac{5}{15} \][/tex]
[tex]\[ \frac{1}{5} = \frac{3}{15} \][/tex]

Adding these gives us:

[tex]\[ \frac{5}{15} + \frac{3}{15} = \frac{8}{15} \][/tex]

3. Rewrite the expression:

Now that we have the sum of the exponents, we can rewrite the original expression as:

[tex]\[ 4^{\frac{8}{15}} \][/tex]

4. Simplify the expression:

Finally, we evaluate the power:

[tex]\[ 4^{\frac{8}{15}} \approx 2.0945882456412535 \][/tex]

Therefore, the simplified result of the expression \( 4^{\frac{1}{3}} \cdot 4^{\frac{1}{5}} \) is approximately:

[tex]\[ 2.0945882456412535 \][/tex]