Explore Westonci.ca, the top Q&A platform where your questions are answered by professionals and enthusiasts alike. Join our platform to connect with experts ready to provide precise answers to your questions in different areas. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To find the best estimate for the volume \( V \) when the pressure \( P \) is \( 7.0 \times 10^3 \) pascals, we can use linear interpolation between the given data points.
The given data points are:
[tex]\[ \begin{array}{|c|c|} \hline P \, (\text{pascals}) & V \, (\text{liters}) \\ \hline 5.0 \times 10^3 & 6.0 \\ 1.5 \times 10^4 & 3.0 \\ 2.0 \times 10^4 & 2.0 \\ 2.5 \times 10^4 & 1.5 \\ \hline \end{array} \][/tex]
We need to estimate the volume \( V \) when the pressure \( P \) is \( 7.0 \times 10^3 \) pascals.
1. Identify the interval in which \( 7.0 \times 10^3 \) pascals falls. That would be between \( 5.0 \times 10^3 \) and \( 1.5 \times 10^4 \) pascals.
2. Use the linear interpolation formula. For two points \((P_1, V_1)\) and \((P_2, V_2)\), the formula for interpolation is:
[tex]\[ V = V_1 + \frac{P - P_1}{P_2 - P_1} \times (V_2 - V_1) \][/tex]
3. Substitute the known values into the formula:
[tex]\[ V = 6.0 + \frac{7.0 \times 10^3 - 5.0 \times 10^3}{1.5 \times 10^4 - 5.0 \times 10^3} \times (3.0 - 6.0) \][/tex]
4. Simplify the values:
[tex]\[ V = 6.0 + \frac{2000}{10000} \times (-3.0) \][/tex]
[tex]\[ V = 6.0 + 0.2 \times (-3.0) \][/tex]
[tex]\[ V = 6.0 - 0.6 \][/tex]
[tex]\[ V = 5.4 \][/tex]
So, the best estimate for the value of \( V \) at \( P = 7.0 \times 10^3 \) pascals is \( 5.4 \) liters.
Therefore, the correct answer is [tex]\( \boxed{5.4 \text{ liters}} \)[/tex].
The given data points are:
[tex]\[ \begin{array}{|c|c|} \hline P \, (\text{pascals}) & V \, (\text{liters}) \\ \hline 5.0 \times 10^3 & 6.0 \\ 1.5 \times 10^4 & 3.0 \\ 2.0 \times 10^4 & 2.0 \\ 2.5 \times 10^4 & 1.5 \\ \hline \end{array} \][/tex]
We need to estimate the volume \( V \) when the pressure \( P \) is \( 7.0 \times 10^3 \) pascals.
1. Identify the interval in which \( 7.0 \times 10^3 \) pascals falls. That would be between \( 5.0 \times 10^3 \) and \( 1.5 \times 10^4 \) pascals.
2. Use the linear interpolation formula. For two points \((P_1, V_1)\) and \((P_2, V_2)\), the formula for interpolation is:
[tex]\[ V = V_1 + \frac{P - P_1}{P_2 - P_1} \times (V_2 - V_1) \][/tex]
3. Substitute the known values into the formula:
[tex]\[ V = 6.0 + \frac{7.0 \times 10^3 - 5.0 \times 10^3}{1.5 \times 10^4 - 5.0 \times 10^3} \times (3.0 - 6.0) \][/tex]
4. Simplify the values:
[tex]\[ V = 6.0 + \frac{2000}{10000} \times (-3.0) \][/tex]
[tex]\[ V = 6.0 + 0.2 \times (-3.0) \][/tex]
[tex]\[ V = 6.0 - 0.6 \][/tex]
[tex]\[ V = 5.4 \][/tex]
So, the best estimate for the value of \( V \) at \( P = 7.0 \times 10^3 \) pascals is \( 5.4 \) liters.
Therefore, the correct answer is [tex]\( \boxed{5.4 \text{ liters}} \)[/tex].
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.