Welcome to Westonci.ca, where curiosity meets expertise. Ask any question and receive fast, accurate answers from our knowledgeable community. Get quick and reliable solutions to your questions from a community of experienced professionals on our platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To find the best estimate for the volume \( V \) when the pressure \( P \) is \( 7.0 \times 10^3 \) pascals, we can use linear interpolation between the given data points.
The given data points are:
[tex]\[ \begin{array}{|c|c|} \hline P \, (\text{pascals}) & V \, (\text{liters}) \\ \hline 5.0 \times 10^3 & 6.0 \\ 1.5 \times 10^4 & 3.0 \\ 2.0 \times 10^4 & 2.0 \\ 2.5 \times 10^4 & 1.5 \\ \hline \end{array} \][/tex]
We need to estimate the volume \( V \) when the pressure \( P \) is \( 7.0 \times 10^3 \) pascals.
1. Identify the interval in which \( 7.0 \times 10^3 \) pascals falls. That would be between \( 5.0 \times 10^3 \) and \( 1.5 \times 10^4 \) pascals.
2. Use the linear interpolation formula. For two points \((P_1, V_1)\) and \((P_2, V_2)\), the formula for interpolation is:
[tex]\[ V = V_1 + \frac{P - P_1}{P_2 - P_1} \times (V_2 - V_1) \][/tex]
3. Substitute the known values into the formula:
[tex]\[ V = 6.0 + \frac{7.0 \times 10^3 - 5.0 \times 10^3}{1.5 \times 10^4 - 5.0 \times 10^3} \times (3.0 - 6.0) \][/tex]
4. Simplify the values:
[tex]\[ V = 6.0 + \frac{2000}{10000} \times (-3.0) \][/tex]
[tex]\[ V = 6.0 + 0.2 \times (-3.0) \][/tex]
[tex]\[ V = 6.0 - 0.6 \][/tex]
[tex]\[ V = 5.4 \][/tex]
So, the best estimate for the value of \( V \) at \( P = 7.0 \times 10^3 \) pascals is \( 5.4 \) liters.
Therefore, the correct answer is [tex]\( \boxed{5.4 \text{ liters}} \)[/tex].
The given data points are:
[tex]\[ \begin{array}{|c|c|} \hline P \, (\text{pascals}) & V \, (\text{liters}) \\ \hline 5.0 \times 10^3 & 6.0 \\ 1.5 \times 10^4 & 3.0 \\ 2.0 \times 10^4 & 2.0 \\ 2.5 \times 10^4 & 1.5 \\ \hline \end{array} \][/tex]
We need to estimate the volume \( V \) when the pressure \( P \) is \( 7.0 \times 10^3 \) pascals.
1. Identify the interval in which \( 7.0 \times 10^3 \) pascals falls. That would be between \( 5.0 \times 10^3 \) and \( 1.5 \times 10^4 \) pascals.
2. Use the linear interpolation formula. For two points \((P_1, V_1)\) and \((P_2, V_2)\), the formula for interpolation is:
[tex]\[ V = V_1 + \frac{P - P_1}{P_2 - P_1} \times (V_2 - V_1) \][/tex]
3. Substitute the known values into the formula:
[tex]\[ V = 6.0 + \frac{7.0 \times 10^3 - 5.0 \times 10^3}{1.5 \times 10^4 - 5.0 \times 10^3} \times (3.0 - 6.0) \][/tex]
4. Simplify the values:
[tex]\[ V = 6.0 + \frac{2000}{10000} \times (-3.0) \][/tex]
[tex]\[ V = 6.0 + 0.2 \times (-3.0) \][/tex]
[tex]\[ V = 6.0 - 0.6 \][/tex]
[tex]\[ V = 5.4 \][/tex]
So, the best estimate for the value of \( V \) at \( P = 7.0 \times 10^3 \) pascals is \( 5.4 \) liters.
Therefore, the correct answer is [tex]\( \boxed{5.4 \text{ liters}} \)[/tex].
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.