Westonci.ca connects you with experts who provide insightful answers to your questions. Join us today and start learning! Experience the ease of finding reliable answers to your questions from a vast community of knowledgeable experts. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To solve the trigonometric inequality \(\sin^2(x) > 1 + \cos(x)\) over the interval \(0 \leq x \leq 2\pi\), let's follow a step-by-step approach.
1. Rewriting the Inequality:
Using the Pythagorean identity for sine squared, \(\sin^2(x) = 1 - \cos^2(x)\), we can rewrite the inequality:
[tex]\[ 1 - \cos^2(x) > 1 + \cos(x) \][/tex]
2. Simplifying the Inequality:
Next, we subtract 1 from both sides:
[tex]\[ 1 - \cos^2(x) - 1 > \cos(x) \][/tex]
Simplifying further, we get:
[tex]\[ -\cos^2(x) > \cos(x) \][/tex]
Move all terms to one side to obtain:
[tex]\[ -\cos^2(x) - \cos(x) > 0 \][/tex]
3. Factoring the Expression:
We can factor out \(-\cos(x)\):
[tex]\[ \cos(x) (\cos(x) + 1) < 0 \][/tex]
4. Analyzing the Inequality:
The product \(\cos(x) (\cos(x) + 1)\) is less than 0, meaning one factor must be positive and the other negative. We analyze where \(\cos(x)\) and \(\cos(x) + 1\) have opposite signs:
- \(\cos(x)\) is negative when \( \frac{\pi}{2} < x < \frac{3\pi}{2} \).
- \(\cos(x) + 1\) is negative when \(\cos(x) < -1\), which is out of the range, so this doesn't affect our interval.
Therefore, \(\cos(x) (\cos(x) + 1)\) is negative when:
[tex]\[ \frac{\pi}{2} < x < \pi \][/tex]
and
[tex]\[ \pi < x < \frac{3\pi}{2} \][/tex]
5. Combining the Intervals:
Combining the valid intervals, we get:
[tex]\[ \frac{\pi}{2} < x < \pi \quad \text{and} \quad \pi < x < \frac{3\pi}{2} \][/tex]
The solution to the inequality \(\sin^2(x) > 1 + \cos(x)\) over the interval \(0 \leq x \leq 2\pi\) is the combined intervals:
[tex]\[ \frac{\pi}{2} < x < \pi \quad \text{and} \quad \pi < x < \frac{3\pi}{2} \][/tex]
So, the correct answer is:
[tex]\[ \boxed{\frac{\pi}{2} < x < \pi \text{ and } \pi < x < \frac{3\pi}{2}} \][/tex]
1. Rewriting the Inequality:
Using the Pythagorean identity for sine squared, \(\sin^2(x) = 1 - \cos^2(x)\), we can rewrite the inequality:
[tex]\[ 1 - \cos^2(x) > 1 + \cos(x) \][/tex]
2. Simplifying the Inequality:
Next, we subtract 1 from both sides:
[tex]\[ 1 - \cos^2(x) - 1 > \cos(x) \][/tex]
Simplifying further, we get:
[tex]\[ -\cos^2(x) > \cos(x) \][/tex]
Move all terms to one side to obtain:
[tex]\[ -\cos^2(x) - \cos(x) > 0 \][/tex]
3. Factoring the Expression:
We can factor out \(-\cos(x)\):
[tex]\[ \cos(x) (\cos(x) + 1) < 0 \][/tex]
4. Analyzing the Inequality:
The product \(\cos(x) (\cos(x) + 1)\) is less than 0, meaning one factor must be positive and the other negative. We analyze where \(\cos(x)\) and \(\cos(x) + 1\) have opposite signs:
- \(\cos(x)\) is negative when \( \frac{\pi}{2} < x < \frac{3\pi}{2} \).
- \(\cos(x) + 1\) is negative when \(\cos(x) < -1\), which is out of the range, so this doesn't affect our interval.
Therefore, \(\cos(x) (\cos(x) + 1)\) is negative when:
[tex]\[ \frac{\pi}{2} < x < \pi \][/tex]
and
[tex]\[ \pi < x < \frac{3\pi}{2} \][/tex]
5. Combining the Intervals:
Combining the valid intervals, we get:
[tex]\[ \frac{\pi}{2} < x < \pi \quad \text{and} \quad \pi < x < \frac{3\pi}{2} \][/tex]
The solution to the inequality \(\sin^2(x) > 1 + \cos(x)\) over the interval \(0 \leq x \leq 2\pi\) is the combined intervals:
[tex]\[ \frac{\pi}{2} < x < \pi \quad \text{and} \quad \pi < x < \frac{3\pi}{2} \][/tex]
So, the correct answer is:
[tex]\[ \boxed{\frac{\pi}{2} < x < \pi \text{ and } \pi < x < \frac{3\pi}{2}} \][/tex]
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.