Discover the answers to your questions at Westonci.ca, where experts share their knowledge and insights with you. Discover in-depth answers to your questions from a wide network of experts on our user-friendly Q&A platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To solve the trigonometric inequality \(\sin^2(x) > 1 + \cos(x)\) over the interval \(0 \leq x \leq 2\pi\), let's follow a step-by-step approach.
1. Rewriting the Inequality:
Using the Pythagorean identity for sine squared, \(\sin^2(x) = 1 - \cos^2(x)\), we can rewrite the inequality:
[tex]\[ 1 - \cos^2(x) > 1 + \cos(x) \][/tex]
2. Simplifying the Inequality:
Next, we subtract 1 from both sides:
[tex]\[ 1 - \cos^2(x) - 1 > \cos(x) \][/tex]
Simplifying further, we get:
[tex]\[ -\cos^2(x) > \cos(x) \][/tex]
Move all terms to one side to obtain:
[tex]\[ -\cos^2(x) - \cos(x) > 0 \][/tex]
3. Factoring the Expression:
We can factor out \(-\cos(x)\):
[tex]\[ \cos(x) (\cos(x) + 1) < 0 \][/tex]
4. Analyzing the Inequality:
The product \(\cos(x) (\cos(x) + 1)\) is less than 0, meaning one factor must be positive and the other negative. We analyze where \(\cos(x)\) and \(\cos(x) + 1\) have opposite signs:
- \(\cos(x)\) is negative when \( \frac{\pi}{2} < x < \frac{3\pi}{2} \).
- \(\cos(x) + 1\) is negative when \(\cos(x) < -1\), which is out of the range, so this doesn't affect our interval.
Therefore, \(\cos(x) (\cos(x) + 1)\) is negative when:
[tex]\[ \frac{\pi}{2} < x < \pi \][/tex]
and
[tex]\[ \pi < x < \frac{3\pi}{2} \][/tex]
5. Combining the Intervals:
Combining the valid intervals, we get:
[tex]\[ \frac{\pi}{2} < x < \pi \quad \text{and} \quad \pi < x < \frac{3\pi}{2} \][/tex]
The solution to the inequality \(\sin^2(x) > 1 + \cos(x)\) over the interval \(0 \leq x \leq 2\pi\) is the combined intervals:
[tex]\[ \frac{\pi}{2} < x < \pi \quad \text{and} \quad \pi < x < \frac{3\pi}{2} \][/tex]
So, the correct answer is:
[tex]\[ \boxed{\frac{\pi}{2} < x < \pi \text{ and } \pi < x < \frac{3\pi}{2}} \][/tex]
1. Rewriting the Inequality:
Using the Pythagorean identity for sine squared, \(\sin^2(x) = 1 - \cos^2(x)\), we can rewrite the inequality:
[tex]\[ 1 - \cos^2(x) > 1 + \cos(x) \][/tex]
2. Simplifying the Inequality:
Next, we subtract 1 from both sides:
[tex]\[ 1 - \cos^2(x) - 1 > \cos(x) \][/tex]
Simplifying further, we get:
[tex]\[ -\cos^2(x) > \cos(x) \][/tex]
Move all terms to one side to obtain:
[tex]\[ -\cos^2(x) - \cos(x) > 0 \][/tex]
3. Factoring the Expression:
We can factor out \(-\cos(x)\):
[tex]\[ \cos(x) (\cos(x) + 1) < 0 \][/tex]
4. Analyzing the Inequality:
The product \(\cos(x) (\cos(x) + 1)\) is less than 0, meaning one factor must be positive and the other negative. We analyze where \(\cos(x)\) and \(\cos(x) + 1\) have opposite signs:
- \(\cos(x)\) is negative when \( \frac{\pi}{2} < x < \frac{3\pi}{2} \).
- \(\cos(x) + 1\) is negative when \(\cos(x) < -1\), which is out of the range, so this doesn't affect our interval.
Therefore, \(\cos(x) (\cos(x) + 1)\) is negative when:
[tex]\[ \frac{\pi}{2} < x < \pi \][/tex]
and
[tex]\[ \pi < x < \frac{3\pi}{2} \][/tex]
5. Combining the Intervals:
Combining the valid intervals, we get:
[tex]\[ \frac{\pi}{2} < x < \pi \quad \text{and} \quad \pi < x < \frac{3\pi}{2} \][/tex]
The solution to the inequality \(\sin^2(x) > 1 + \cos(x)\) over the interval \(0 \leq x \leq 2\pi\) is the combined intervals:
[tex]\[ \frac{\pi}{2} < x < \pi \quad \text{and} \quad \pi < x < \frac{3\pi}{2} \][/tex]
So, the correct answer is:
[tex]\[ \boxed{\frac{\pi}{2} < x < \pi \text{ and } \pi < x < \frac{3\pi}{2}} \][/tex]
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.