Explore Westonci.ca, the top Q&A platform where your questions are answered by professionals and enthusiasts alike. Get immediate and reliable answers to your questions from a community of experienced experts on our platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To solve the trigonometric inequality \(\sin^2(x) > 1 + \cos(x)\) over the interval \(0 \leq x \leq 2\pi\), let's follow a step-by-step approach.
1. Rewriting the Inequality:
Using the Pythagorean identity for sine squared, \(\sin^2(x) = 1 - \cos^2(x)\), we can rewrite the inequality:
[tex]\[ 1 - \cos^2(x) > 1 + \cos(x) \][/tex]
2. Simplifying the Inequality:
Next, we subtract 1 from both sides:
[tex]\[ 1 - \cos^2(x) - 1 > \cos(x) \][/tex]
Simplifying further, we get:
[tex]\[ -\cos^2(x) > \cos(x) \][/tex]
Move all terms to one side to obtain:
[tex]\[ -\cos^2(x) - \cos(x) > 0 \][/tex]
3. Factoring the Expression:
We can factor out \(-\cos(x)\):
[tex]\[ \cos(x) (\cos(x) + 1) < 0 \][/tex]
4. Analyzing the Inequality:
The product \(\cos(x) (\cos(x) + 1)\) is less than 0, meaning one factor must be positive and the other negative. We analyze where \(\cos(x)\) and \(\cos(x) + 1\) have opposite signs:
- \(\cos(x)\) is negative when \( \frac{\pi}{2} < x < \frac{3\pi}{2} \).
- \(\cos(x) + 1\) is negative when \(\cos(x) < -1\), which is out of the range, so this doesn't affect our interval.
Therefore, \(\cos(x) (\cos(x) + 1)\) is negative when:
[tex]\[ \frac{\pi}{2} < x < \pi \][/tex]
and
[tex]\[ \pi < x < \frac{3\pi}{2} \][/tex]
5. Combining the Intervals:
Combining the valid intervals, we get:
[tex]\[ \frac{\pi}{2} < x < \pi \quad \text{and} \quad \pi < x < \frac{3\pi}{2} \][/tex]
The solution to the inequality \(\sin^2(x) > 1 + \cos(x)\) over the interval \(0 \leq x \leq 2\pi\) is the combined intervals:
[tex]\[ \frac{\pi}{2} < x < \pi \quad \text{and} \quad \pi < x < \frac{3\pi}{2} \][/tex]
So, the correct answer is:
[tex]\[ \boxed{\frac{\pi}{2} < x < \pi \text{ and } \pi < x < \frac{3\pi}{2}} \][/tex]
1. Rewriting the Inequality:
Using the Pythagorean identity for sine squared, \(\sin^2(x) = 1 - \cos^2(x)\), we can rewrite the inequality:
[tex]\[ 1 - \cos^2(x) > 1 + \cos(x) \][/tex]
2. Simplifying the Inequality:
Next, we subtract 1 from both sides:
[tex]\[ 1 - \cos^2(x) - 1 > \cos(x) \][/tex]
Simplifying further, we get:
[tex]\[ -\cos^2(x) > \cos(x) \][/tex]
Move all terms to one side to obtain:
[tex]\[ -\cos^2(x) - \cos(x) > 0 \][/tex]
3. Factoring the Expression:
We can factor out \(-\cos(x)\):
[tex]\[ \cos(x) (\cos(x) + 1) < 0 \][/tex]
4. Analyzing the Inequality:
The product \(\cos(x) (\cos(x) + 1)\) is less than 0, meaning one factor must be positive and the other negative. We analyze where \(\cos(x)\) and \(\cos(x) + 1\) have opposite signs:
- \(\cos(x)\) is negative when \( \frac{\pi}{2} < x < \frac{3\pi}{2} \).
- \(\cos(x) + 1\) is negative when \(\cos(x) < -1\), which is out of the range, so this doesn't affect our interval.
Therefore, \(\cos(x) (\cos(x) + 1)\) is negative when:
[tex]\[ \frac{\pi}{2} < x < \pi \][/tex]
and
[tex]\[ \pi < x < \frac{3\pi}{2} \][/tex]
5. Combining the Intervals:
Combining the valid intervals, we get:
[tex]\[ \frac{\pi}{2} < x < \pi \quad \text{and} \quad \pi < x < \frac{3\pi}{2} \][/tex]
The solution to the inequality \(\sin^2(x) > 1 + \cos(x)\) over the interval \(0 \leq x \leq 2\pi\) is the combined intervals:
[tex]\[ \frac{\pi}{2} < x < \pi \quad \text{and} \quad \pi < x < \frac{3\pi}{2} \][/tex]
So, the correct answer is:
[tex]\[ \boxed{\frac{\pi}{2} < x < \pi \text{ and } \pi < x < \frac{3\pi}{2}} \][/tex]
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.