Get reliable answers to your questions at Westonci.ca, where our knowledgeable community is always ready to help. Our platform connects you with professionals ready to provide precise answers to all your questions in various areas of expertise. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
Given the equation \( z^2 = \frac{1}{2} \left[ \cos \left( \frac{2\pi}{5} \right) + i \sin \left( \frac{2\pi}{5} \right) \right] \), we need to determine the point that represents the complex number \( z \).
First, let's rewrite the given complex number on the right-hand side in polar form:
[tex]\[ z^2 = \frac{1}{2} \left[ \cos \left( \frac{2\pi}{5} \right) + i \sin \left( \frac{2\pi}{5} \right) \right]. \][/tex]
1. We start by identifying the magnitude \( r \) and the angle \( \theta \) of the complex number:
- The magnitude of the right-hand side is \( \frac{1}{\sqrt{2}} \), since \( \left| \frac{1}{2} \right| = \frac{1}{2} \) and we take the square root of this magnitude to find \( |z| \).
- The angle \( \theta \) for this complex number is \( \frac{2\pi}{10} = \frac{\pi}{5} \), using the De Moivre's theorem.
2. Next, we find \( z \) by taking the square root of both sides. To do this, we use the fact that:
[tex]\[ z = \sqrt{\frac{1}{\sqrt{2}}} \left[ \cos \left( \frac{\pi}{5} \right) + i \sin \left( \frac{\pi}{5} \right) \right]. \][/tex]
3. Calculate the magnitude of \( z \):
[tex]\[ |z| = \left( \frac{1}{\sqrt{2}} \right)^{1/2} = \left( \frac{1}{2} \right)^{1/4} = \frac{1}{\sqrt[4]{2}}. \][/tex]
4. Determine the real and imaginary parts of \( z \) based on the angle \( \frac{\pi}{5} \):
[tex]\[ z = \frac{1}{\sqrt[4]{2}} \left[ \cos \left( \frac{\pi}{5} \right) + i \sin \left( \frac{\pi}{5} \right) \right]. \][/tex]
5. Plug the angle into the trigonometric functions and find the Cartesian coordinates:
- The real part is \( \frac{1}{\sqrt[4]{2}} \cos \left( \frac{\pi}{5} \right) \approx 0.572 \)
- The imaginary part is \( \frac{1}{\sqrt[4]{2}} \sin \left( \frac{\pi}{5} \right) \approx 0.416 \)
Therefore, the coordinates representing \( z \) are approximately:
[tex]\[ (0.572, 0.416). \][/tex]
So, the lettered point that corresponds to [tex]\( z \)[/tex] on the complex plane is the one with coordinates very close to [tex]\((0.572, 0.416)\)[/tex]. Identify the point that matches or closely matches this result.
First, let's rewrite the given complex number on the right-hand side in polar form:
[tex]\[ z^2 = \frac{1}{2} \left[ \cos \left( \frac{2\pi}{5} \right) + i \sin \left( \frac{2\pi}{5} \right) \right]. \][/tex]
1. We start by identifying the magnitude \( r \) and the angle \( \theta \) of the complex number:
- The magnitude of the right-hand side is \( \frac{1}{\sqrt{2}} \), since \( \left| \frac{1}{2} \right| = \frac{1}{2} \) and we take the square root of this magnitude to find \( |z| \).
- The angle \( \theta \) for this complex number is \( \frac{2\pi}{10} = \frac{\pi}{5} \), using the De Moivre's theorem.
2. Next, we find \( z \) by taking the square root of both sides. To do this, we use the fact that:
[tex]\[ z = \sqrt{\frac{1}{\sqrt{2}}} \left[ \cos \left( \frac{\pi}{5} \right) + i \sin \left( \frac{\pi}{5} \right) \right]. \][/tex]
3. Calculate the magnitude of \( z \):
[tex]\[ |z| = \left( \frac{1}{\sqrt{2}} \right)^{1/2} = \left( \frac{1}{2} \right)^{1/4} = \frac{1}{\sqrt[4]{2}}. \][/tex]
4. Determine the real and imaginary parts of \( z \) based on the angle \( \frac{\pi}{5} \):
[tex]\[ z = \frac{1}{\sqrt[4]{2}} \left[ \cos \left( \frac{\pi}{5} \right) + i \sin \left( \frac{\pi}{5} \right) \right]. \][/tex]
5. Plug the angle into the trigonometric functions and find the Cartesian coordinates:
- The real part is \( \frac{1}{\sqrt[4]{2}} \cos \left( \frac{\pi}{5} \right) \approx 0.572 \)
- The imaginary part is \( \frac{1}{\sqrt[4]{2}} \sin \left( \frac{\pi}{5} \right) \approx 0.416 \)
Therefore, the coordinates representing \( z \) are approximately:
[tex]\[ (0.572, 0.416). \][/tex]
So, the lettered point that corresponds to [tex]\( z \)[/tex] on the complex plane is the one with coordinates very close to [tex]\((0.572, 0.416)\)[/tex]. Identify the point that matches or closely matches this result.
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.