Discover a wealth of knowledge at Westonci.ca, where experts provide answers to your most pressing questions. Explore in-depth answers to your questions from a knowledgeable community of experts across different fields. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
Given the equation \( z^2 = \frac{1}{2} \left[ \cos \left( \frac{2\pi}{5} \right) + i \sin \left( \frac{2\pi}{5} \right) \right] \), we need to determine the point that represents the complex number \( z \).
First, let's rewrite the given complex number on the right-hand side in polar form:
[tex]\[ z^2 = \frac{1}{2} \left[ \cos \left( \frac{2\pi}{5} \right) + i \sin \left( \frac{2\pi}{5} \right) \right]. \][/tex]
1. We start by identifying the magnitude \( r \) and the angle \( \theta \) of the complex number:
- The magnitude of the right-hand side is \( \frac{1}{\sqrt{2}} \), since \( \left| \frac{1}{2} \right| = \frac{1}{2} \) and we take the square root of this magnitude to find \( |z| \).
- The angle \( \theta \) for this complex number is \( \frac{2\pi}{10} = \frac{\pi}{5} \), using the De Moivre's theorem.
2. Next, we find \( z \) by taking the square root of both sides. To do this, we use the fact that:
[tex]\[ z = \sqrt{\frac{1}{\sqrt{2}}} \left[ \cos \left( \frac{\pi}{5} \right) + i \sin \left( \frac{\pi}{5} \right) \right]. \][/tex]
3. Calculate the magnitude of \( z \):
[tex]\[ |z| = \left( \frac{1}{\sqrt{2}} \right)^{1/2} = \left( \frac{1}{2} \right)^{1/4} = \frac{1}{\sqrt[4]{2}}. \][/tex]
4. Determine the real and imaginary parts of \( z \) based on the angle \( \frac{\pi}{5} \):
[tex]\[ z = \frac{1}{\sqrt[4]{2}} \left[ \cos \left( \frac{\pi}{5} \right) + i \sin \left( \frac{\pi}{5} \right) \right]. \][/tex]
5. Plug the angle into the trigonometric functions and find the Cartesian coordinates:
- The real part is \( \frac{1}{\sqrt[4]{2}} \cos \left( \frac{\pi}{5} \right) \approx 0.572 \)
- The imaginary part is \( \frac{1}{\sqrt[4]{2}} \sin \left( \frac{\pi}{5} \right) \approx 0.416 \)
Therefore, the coordinates representing \( z \) are approximately:
[tex]\[ (0.572, 0.416). \][/tex]
So, the lettered point that corresponds to [tex]\( z \)[/tex] on the complex plane is the one with coordinates very close to [tex]\((0.572, 0.416)\)[/tex]. Identify the point that matches or closely matches this result.
First, let's rewrite the given complex number on the right-hand side in polar form:
[tex]\[ z^2 = \frac{1}{2} \left[ \cos \left( \frac{2\pi}{5} \right) + i \sin \left( \frac{2\pi}{5} \right) \right]. \][/tex]
1. We start by identifying the magnitude \( r \) and the angle \( \theta \) of the complex number:
- The magnitude of the right-hand side is \( \frac{1}{\sqrt{2}} \), since \( \left| \frac{1}{2} \right| = \frac{1}{2} \) and we take the square root of this magnitude to find \( |z| \).
- The angle \( \theta \) for this complex number is \( \frac{2\pi}{10} = \frac{\pi}{5} \), using the De Moivre's theorem.
2. Next, we find \( z \) by taking the square root of both sides. To do this, we use the fact that:
[tex]\[ z = \sqrt{\frac{1}{\sqrt{2}}} \left[ \cos \left( \frac{\pi}{5} \right) + i \sin \left( \frac{\pi}{5} \right) \right]. \][/tex]
3. Calculate the magnitude of \( z \):
[tex]\[ |z| = \left( \frac{1}{\sqrt{2}} \right)^{1/2} = \left( \frac{1}{2} \right)^{1/4} = \frac{1}{\sqrt[4]{2}}. \][/tex]
4. Determine the real and imaginary parts of \( z \) based on the angle \( \frac{\pi}{5} \):
[tex]\[ z = \frac{1}{\sqrt[4]{2}} \left[ \cos \left( \frac{\pi}{5} \right) + i \sin \left( \frac{\pi}{5} \right) \right]. \][/tex]
5. Plug the angle into the trigonometric functions and find the Cartesian coordinates:
- The real part is \( \frac{1}{\sqrt[4]{2}} \cos \left( \frac{\pi}{5} \right) \approx 0.572 \)
- The imaginary part is \( \frac{1}{\sqrt[4]{2}} \sin \left( \frac{\pi}{5} \right) \approx 0.416 \)
Therefore, the coordinates representing \( z \) are approximately:
[tex]\[ (0.572, 0.416). \][/tex]
So, the lettered point that corresponds to [tex]\( z \)[/tex] on the complex plane is the one with coordinates very close to [tex]\((0.572, 0.416)\)[/tex]. Identify the point that matches or closely matches this result.
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.