Westonci.ca connects you with experts who provide insightful answers to your questions. Join us today and start learning! Our platform offers a seamless experience for finding reliable answers from a network of experienced professionals. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To determine which function is a stretch of an exponential growth function, we need to evaluate the coefficients and bases of the given exponential functions. A function represents a stretch of an exponential growth function if it has both a coefficient greater than 1 and a base greater than 1.
Let's analyze each function:
1. \( f(x) = \frac{2}{3}\left(\frac{2}{3}\right)^x \)
- Coefficient: \(\frac{2}{3}\)
- Base: \(\frac{2}{3}\)
- Both the coefficient and the base are less than 1. Hence, this function does not represent a stretch of an exponential growth function.
2. \( f(x) = \frac{3}{2}\left(\frac{2}{3}\right)^x \)
- Coefficient: \(\frac{3}{2}\)
- Base: \(\frac{2}{3}\)
- The coefficient is greater than 1, but the base is less than 1. Thus, this function does not represent a stretch of an exponential growth function.
3. \( f(x) = \frac{3}{2}\left(\frac{3}{2}\right)^x \)
- Coefficient: \(\frac{3}{2}\)
- Base: \(\frac{3}{2}\)
- Both the coefficient and the base are greater than 1. Therefore, this function does represent a stretch of an exponential growth function.
4. \( f(x) = \frac{2}{3}\left(\frac{3}{2}\right)^x \)
- Coefficient: \(\frac{2}{3}\)
- Base: \(\frac{3}{2}\)
- The base is greater than 1, but the coefficient is less than 1. Hence, this function does not represent a stretch of an exponential growth function.
Based on the analysis above, the function that represents a stretch of an exponential growth function is:
[tex]\[ f(x) = \frac{3}{2}\left(\frac{3}{2}\right)^x \][/tex]
Therefore, the correct option is the third one.
Let's analyze each function:
1. \( f(x) = \frac{2}{3}\left(\frac{2}{3}\right)^x \)
- Coefficient: \(\frac{2}{3}\)
- Base: \(\frac{2}{3}\)
- Both the coefficient and the base are less than 1. Hence, this function does not represent a stretch of an exponential growth function.
2. \( f(x) = \frac{3}{2}\left(\frac{2}{3}\right)^x \)
- Coefficient: \(\frac{3}{2}\)
- Base: \(\frac{2}{3}\)
- The coefficient is greater than 1, but the base is less than 1. Thus, this function does not represent a stretch of an exponential growth function.
3. \( f(x) = \frac{3}{2}\left(\frac{3}{2}\right)^x \)
- Coefficient: \(\frac{3}{2}\)
- Base: \(\frac{3}{2}\)
- Both the coefficient and the base are greater than 1. Therefore, this function does represent a stretch of an exponential growth function.
4. \( f(x) = \frac{2}{3}\left(\frac{3}{2}\right)^x \)
- Coefficient: \(\frac{2}{3}\)
- Base: \(\frac{3}{2}\)
- The base is greater than 1, but the coefficient is less than 1. Hence, this function does not represent a stretch of an exponential growth function.
Based on the analysis above, the function that represents a stretch of an exponential growth function is:
[tex]\[ f(x) = \frac{3}{2}\left(\frac{3}{2}\right)^x \][/tex]
Therefore, the correct option is the third one.
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.