Find the best solutions to your questions at Westonci.ca, the premier Q&A platform with a community of knowledgeable experts. Experience the convenience of getting accurate answers to your questions from a dedicated community of professionals. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
Certainly! Let's factorize each of the given expressions step by step.
### Part (a): \( 250 m^4 - 2 m \)
1. Identify the common factor:
Both terms have a factor of \( 2m \). So, we can factor out \( 2m \).
2. Factor out the common factor:
[tex]\[ 250 m^4 - 2 m = 2m (125 m^3 - 1) \][/tex]
3. Factor the remaining expression:
Notice that \( 125 m^3 - 1 \) is a difference of cubes, which can be factorized as:
[tex]\[ 125 m^3 = (5m)^3 \quad \text{and} \quad 1 = 1^3 \][/tex]
Thus,
[tex]\[ 125 m^3 - 1 = (5m - 1)(25m^2 + 5m + 1) \][/tex]
So, the fully factorized form is:
[tex]\[ 250 m^4 - 2 m = 2m (5m - 1) (25m^2 + 5m + 1) \][/tex]
### Part (b): \( x^3 y - 64 y^4 \)
1. Identify the common factor:
Both terms have a factor of \( y \). So, we can factor out \( y \).
2. Factor out the common factor:
[tex]\[ x^3 y - 64 y^4 = y (x^3 - 64 y^3) \][/tex]
3. Factor the remaining expression:
Notice that \( x^3 - 64 y^3 \) is a difference of cubes, which can be factorized as:
[tex]\[ 64 y^3 = (4y)^3 \][/tex]
Thus,
[tex]\[ x^3 - 64 y^3 = (x - 4y) (x^2 + 4xy + 16y^2) \][/tex]
So, the fully factorized form is:
[tex]\[ x^3 y - 64 y^4 = y (x - 4y) (x^2 + 4xy + 16y^2) \][/tex]
### Part (d): \( (a-b)^3 - 8(a+b)^3 \)
1. Recognize the cubes:
This can be recognized as a difference of cubes:
[tex]\[ 8(a+b)^3 = (2(a+b))^3 \][/tex]
2. Use the difference of cubes formula:
[tex]\[ (A)^3 - (B)^3 = (A - B)(A^2 + AB + B^2) \][/tex]
Here, \( A = a - b \) and \( B = 2(a + b) \):
Substituting, we get:
[tex]\[ (a-b)^3 - 8(a+b)^3 = \big((a - b) - 2(a + b)\big)\cdot\big((a-b)^2 + (a-b)\cdot2(a+b) + (2(a+b))^2\big) \][/tex]
3. Simplify the expression:
[tex]\[ (a - b) - 2(a + b) = a - b - 2a - 2b = -a - 3b \][/tex]
And,
[tex]\[ (a-b)^2 + 2(a-b)(a+b) + 4(a+b)^2 = a^2 - 2ab + b^2 + 2(a^2 - b^2) + 4a^2 + 8ab + 4b^2 = 7a^2 + 6ab + 3b^2 \][/tex]
So, the fully factorized form is:
[tex]\[ (a-b)^3 - 8(a+b)^3 = -(a + 3b)(7a^2 + 6ab + 3b^2) \][/tex]
### Part (e): \( \frac{x^3}{y^3} - \frac{y^3}{x^3} \)
1. Combine the terms under a common denominator:
[tex]\[ \frac{x^3}{y^3} - \frac{y^3}{x^3} = \frac{x^6 - y^6}{x^3 y^3} \][/tex]
2. Recognize the numerator as a difference of squares:
[tex]\[ x^6 - y^6 = (x^3)^2 - (y^3)^2 = (x^3 - y^3)(x^3 + y^3) \][/tex]
3. Factor further the differences of cubes:
[tex]\[ x^3 - y^3 = (x - y)(x^2 + xy + y^2) \][/tex]
[tex]\[ x^3 + y^3 = (x + y)(x^2 - xy + y^2) \][/tex]
Therefore, the full factorization becomes:
[tex]\[ \frac{x^6 - y^6}{x^3 y^3} = \frac{(x^3 - y^3)(x^3 + y^3)}{x^3 y^3} = \frac{(x - y)(x^2 + xy + y^2)(x + y)(x^2 - xy + y^2)}{x^3 y^3} \][/tex]
So, the fully factorized form is:
[tex]\[ \frac{x^3}{y^3} - \frac{y^3}{x^3} = \frac{(x - y)(x^2 + xy + y^2)(x + y)(x^2 - xy + y^2)}{x^3 y^3} \][/tex]
Now we have the fully factorized forms for each of the given expressions.
### Part (a): \( 250 m^4 - 2 m \)
1. Identify the common factor:
Both terms have a factor of \( 2m \). So, we can factor out \( 2m \).
2. Factor out the common factor:
[tex]\[ 250 m^4 - 2 m = 2m (125 m^3 - 1) \][/tex]
3. Factor the remaining expression:
Notice that \( 125 m^3 - 1 \) is a difference of cubes, which can be factorized as:
[tex]\[ 125 m^3 = (5m)^3 \quad \text{and} \quad 1 = 1^3 \][/tex]
Thus,
[tex]\[ 125 m^3 - 1 = (5m - 1)(25m^2 + 5m + 1) \][/tex]
So, the fully factorized form is:
[tex]\[ 250 m^4 - 2 m = 2m (5m - 1) (25m^2 + 5m + 1) \][/tex]
### Part (b): \( x^3 y - 64 y^4 \)
1. Identify the common factor:
Both terms have a factor of \( y \). So, we can factor out \( y \).
2. Factor out the common factor:
[tex]\[ x^3 y - 64 y^4 = y (x^3 - 64 y^3) \][/tex]
3. Factor the remaining expression:
Notice that \( x^3 - 64 y^3 \) is a difference of cubes, which can be factorized as:
[tex]\[ 64 y^3 = (4y)^3 \][/tex]
Thus,
[tex]\[ x^3 - 64 y^3 = (x - 4y) (x^2 + 4xy + 16y^2) \][/tex]
So, the fully factorized form is:
[tex]\[ x^3 y - 64 y^4 = y (x - 4y) (x^2 + 4xy + 16y^2) \][/tex]
### Part (d): \( (a-b)^3 - 8(a+b)^3 \)
1. Recognize the cubes:
This can be recognized as a difference of cubes:
[tex]\[ 8(a+b)^3 = (2(a+b))^3 \][/tex]
2. Use the difference of cubes formula:
[tex]\[ (A)^3 - (B)^3 = (A - B)(A^2 + AB + B^2) \][/tex]
Here, \( A = a - b \) and \( B = 2(a + b) \):
Substituting, we get:
[tex]\[ (a-b)^3 - 8(a+b)^3 = \big((a - b) - 2(a + b)\big)\cdot\big((a-b)^2 + (a-b)\cdot2(a+b) + (2(a+b))^2\big) \][/tex]
3. Simplify the expression:
[tex]\[ (a - b) - 2(a + b) = a - b - 2a - 2b = -a - 3b \][/tex]
And,
[tex]\[ (a-b)^2 + 2(a-b)(a+b) + 4(a+b)^2 = a^2 - 2ab + b^2 + 2(a^2 - b^2) + 4a^2 + 8ab + 4b^2 = 7a^2 + 6ab + 3b^2 \][/tex]
So, the fully factorized form is:
[tex]\[ (a-b)^3 - 8(a+b)^3 = -(a + 3b)(7a^2 + 6ab + 3b^2) \][/tex]
### Part (e): \( \frac{x^3}{y^3} - \frac{y^3}{x^3} \)
1. Combine the terms under a common denominator:
[tex]\[ \frac{x^3}{y^3} - \frac{y^3}{x^3} = \frac{x^6 - y^6}{x^3 y^3} \][/tex]
2. Recognize the numerator as a difference of squares:
[tex]\[ x^6 - y^6 = (x^3)^2 - (y^3)^2 = (x^3 - y^3)(x^3 + y^3) \][/tex]
3. Factor further the differences of cubes:
[tex]\[ x^3 - y^3 = (x - y)(x^2 + xy + y^2) \][/tex]
[tex]\[ x^3 + y^3 = (x + y)(x^2 - xy + y^2) \][/tex]
Therefore, the full factorization becomes:
[tex]\[ \frac{x^6 - y^6}{x^3 y^3} = \frac{(x^3 - y^3)(x^3 + y^3)}{x^3 y^3} = \frac{(x - y)(x^2 + xy + y^2)(x + y)(x^2 - xy + y^2)}{x^3 y^3} \][/tex]
So, the fully factorized form is:
[tex]\[ \frac{x^3}{y^3} - \frac{y^3}{x^3} = \frac{(x - y)(x^2 + xy + y^2)(x + y)(x^2 - xy + y^2)}{x^3 y^3} \][/tex]
Now we have the fully factorized forms for each of the given expressions.
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.