Discover a wealth of knowledge at Westonci.ca, where experts provide answers to your most pressing questions. Experience the ease of finding reliable answers to your questions from a vast community of knowledgeable experts. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To solve this problem and determine the next point Tanisha should plot on the graph of the function \( f(x) = 25 \left( \frac{3}{5} \right)^x \), we will follow these steps:
1. Understand the function: The function given is \( f(x) = 25 \left( \frac{3}{5} \right)^x \).
2. Identify the given point: The point provided in the problem is \( (1, 15) \). This means that when \( x = 1 \), the function evaluates to 15. So, checking:
[tex]\[ f(1) = 25 \left( \frac{3}{5} \right)^1 \][/tex]
Simplifying this, we get:
[tex]\[ f(1) = 25 \left( \frac{3}{5} \right) = 25 \times 0.6 = 15 \][/tex]
This confirms that \( (1, 15) \) correctly lies on the function \( f(x) \).
3. Find the y-coordinate for the next x-value: Now, we need to determine the y-coordinate when \( x = 2 \). Plugging \( x = 2 \) into the function:
[tex]\[ f(2) = 25 \left( \frac{3}{5} \right)^2 \][/tex]
Simplifying this, we get:
[tex]\[ \left( \frac{3}{5} \right)^2 = \left( \frac{3}{5} \times \frac{3}{5} \right) = \frac{9}{25} \][/tex]
Then multiply by 25:
[tex]\[ f(2) = 25 \times \frac{9}{25} = 9 \][/tex]
Therefore, the y-coordinate when \( x = 2 \) is \( 9 \), giving us the point \( (2, 9) \).
4. Choose the correct option: Among the options provided:
- \((2, 9)\)
- \((2, -10)\)
- \(\left(2, 14 \frac{2}{5}\right)\)
- \((2, 5)\)
The correct point that Tanisha should plot is \( (2, 9) \).
Thus, the next point she should plot on the graph is [tex]\((2, 9)\)[/tex].
1. Understand the function: The function given is \( f(x) = 25 \left( \frac{3}{5} \right)^x \).
2. Identify the given point: The point provided in the problem is \( (1, 15) \). This means that when \( x = 1 \), the function evaluates to 15. So, checking:
[tex]\[ f(1) = 25 \left( \frac{3}{5} \right)^1 \][/tex]
Simplifying this, we get:
[tex]\[ f(1) = 25 \left( \frac{3}{5} \right) = 25 \times 0.6 = 15 \][/tex]
This confirms that \( (1, 15) \) correctly lies on the function \( f(x) \).
3. Find the y-coordinate for the next x-value: Now, we need to determine the y-coordinate when \( x = 2 \). Plugging \( x = 2 \) into the function:
[tex]\[ f(2) = 25 \left( \frac{3}{5} \right)^2 \][/tex]
Simplifying this, we get:
[tex]\[ \left( \frac{3}{5} \right)^2 = \left( \frac{3}{5} \times \frac{3}{5} \right) = \frac{9}{25} \][/tex]
Then multiply by 25:
[tex]\[ f(2) = 25 \times \frac{9}{25} = 9 \][/tex]
Therefore, the y-coordinate when \( x = 2 \) is \( 9 \), giving us the point \( (2, 9) \).
4. Choose the correct option: Among the options provided:
- \((2, 9)\)
- \((2, -10)\)
- \(\left(2, 14 \frac{2}{5}\right)\)
- \((2, 5)\)
The correct point that Tanisha should plot is \( (2, 9) \).
Thus, the next point she should plot on the graph is [tex]\((2, 9)\)[/tex].
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.