Looking for trustworthy answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Ask your questions and receive accurate answers from professionals with extensive experience in various fields on our platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.

Which best describes the range of the function [tex]f(x)=\frac{2}{3}(6)^x[/tex] after it has been reflected over the [tex]x[/tex]-axis?

A. all real numbers
B. all real numbers less than 0
C. all real numbers greater than 0
D. all real numbers less than or equal to 0

Sagot :

To determine the range of the function \( f(x) = \frac{2}{3}(6)^x \) after it has been reflected over the \( x \)-axis, let's go through the steps methodically.

1. Original Function Analysis:
- The original function is \( f(x) = \frac{2}{3}(6)^x \).
- For any exponent \( x \), \( 6^x \) is always positive since the base 6 is a positive number.
- Multiplying this positive value by \(\frac{2}{3}\), a positive number, means \( f(x) \) is always positive.
- Hence, the range of the original function \( f(x) \) is all real numbers greater than 0.

2. Reflecting Over the \( x \)-Axis:
- Reflecting a function over the \( x \)-axis involves changing the sign of the function's output.
- The transformed function, reflecting \( f(x) \) over the \( x \)-axis, becomes \( f'(x) = -\frac{2}{3}(6)^x \).

3. Range of the Reflected Function:
- In the reflected function \( f'(x) = -\frac{2}{3}(6)^x \), for each \( x \), the output \( \frac{2}{3}(6)^x \) is always positive, as discussed before.
- By multiplying this positive output by -1 (due to reflection), we switch the sign of the original outputs, making all outputs negative.
- Therefore, the function \( f'(x) \) yields only negative values.

4. Conclusion:
- The new range of the transformed function \( f'(x) \) is all real numbers less than or equal to 0 since it includes all negative values, and zero itself is attainable as an upper bound when considering the asymptotic behavior as \( x \to -\infty \).

Hence, the best description of the range of the function \( f(x) = \frac{2}{3}(6)^x \) after it has been reflected over the \( x \)-axis is:

all real numbers less than or equal to 0.