Explore Westonci.ca, the leading Q&A site where experts provide accurate and helpful answers to all your questions. Explore our Q&A platform to find reliable answers from a wide range of experts in different fields. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.

The function [tex]$f(x)=2 \cdot 5^x[tex]$[/tex] can be used to represent the curve through the points [tex]$[/tex](1,10)[tex]$[/tex], [tex]$[/tex](2,50)[tex]$[/tex], and [tex]$[/tex](3,250)$[/tex].

What is the multiplicative rate of change of the function?

A. 2
B. 5
C. 10
D. 32


Sagot :

To determine the multiplicative rate of change of the exponential function \( f(x) = 2 \cdot 5^x \), we need to identify the base of the exponent.

1. The given function is \( f(x) = 2 \cdot 5^x \).
2. In an exponential function of the form \( f(x) = a \cdot b^x \):
- \( a \) is the initial value or coefficient.
- \( b \) is the base of the exponential, which represents the multiplicative rate of change.

3. In our function, \( f(x) = 2 \cdot 5^x \):
- The coefficient \( a \) is 2.
- The base \( b \) is 5.

4. The base \( b \), which is 5, is the multiplicative rate of change of the function. This means that for each unit increase in \( x \), the value of the function \( f(x) \) is multiplied by 5.

Therefore, the multiplicative rate of change of the function [tex]\( f(x) = 2 \cdot 5^x \)[/tex] is [tex]\(\boxed{5}\)[/tex].
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.