Find the best answers to your questions at Westonci.ca, where experts and enthusiasts provide accurate, reliable information. Get quick and reliable solutions to your questions from a community of seasoned experts on our user-friendly platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To determine the properties of the function \( h(x) = 6^x - 4 \), we need to analyze its domain, range, and asymptote.
### Domain
The function \( h(x) = 6^x - 4 \) involves an exponential term \( 6^x \). Exponential functions like \( 6^x \) are defined for all real numbers because you can raise 6 to any real number power. Therefore, the domain of \( h(x) \) is:
[tex]\[ \{x \mid x \text{ is a real number}\} \][/tex]
### Range
To find the range of \( h(x) = 6^x - 4 \), consider the properties of the exponential function \( 6^x \).
- The expression \( 6^x \) is always positive for any real number \( x \). Specifically, \( 6^x > 0 \).
- Subtracting 4 from any positive number still yields a number greater than \(-4\).
So, \( 6^x - 4 > -4 \). Therefore, the range of \( h(x) \) is:
[tex]\[ \{y \mid y > -4\} \][/tex]
### Asymptote
The function \( h(x) = 6^x - 4 \) is an exponential function shifted down by 4 units. To find the horizontal asymptote, consider the behavior of \( h(x) \) as \( x \) approaches negative infinity:
- As \( x \to -\infty \), \( 6^x \) approaches 0 since raising 6 to a very large negative number produces a value close to 0.
- Hence, \( 6^x - 4 \) approaches \( -4 \).
So, the horizontal asymptote of \( h(x) \) is:
[tex]\[ y = -4 \][/tex]
Based on this analysis, the correct answer is:
- Domain: \(\{x \mid x \text{ is a real number}\}\)
- Range: \(\{y \mid y > -4\}\)
- Asymptote: \(y = -4\)
So the correct selection is:
- Domain: [tex]\(\{x \mid x \text{ is a real number}\}\)[/tex]; Range: [tex]\(\{y \mid y > -4\}\)[/tex]; Asymptote: [tex]\(y = -4\)[/tex]
### Domain
The function \( h(x) = 6^x - 4 \) involves an exponential term \( 6^x \). Exponential functions like \( 6^x \) are defined for all real numbers because you can raise 6 to any real number power. Therefore, the domain of \( h(x) \) is:
[tex]\[ \{x \mid x \text{ is a real number}\} \][/tex]
### Range
To find the range of \( h(x) = 6^x - 4 \), consider the properties of the exponential function \( 6^x \).
- The expression \( 6^x \) is always positive for any real number \( x \). Specifically, \( 6^x > 0 \).
- Subtracting 4 from any positive number still yields a number greater than \(-4\).
So, \( 6^x - 4 > -4 \). Therefore, the range of \( h(x) \) is:
[tex]\[ \{y \mid y > -4\} \][/tex]
### Asymptote
The function \( h(x) = 6^x - 4 \) is an exponential function shifted down by 4 units. To find the horizontal asymptote, consider the behavior of \( h(x) \) as \( x \) approaches negative infinity:
- As \( x \to -\infty \), \( 6^x \) approaches 0 since raising 6 to a very large negative number produces a value close to 0.
- Hence, \( 6^x - 4 \) approaches \( -4 \).
So, the horizontal asymptote of \( h(x) \) is:
[tex]\[ y = -4 \][/tex]
Based on this analysis, the correct answer is:
- Domain: \(\{x \mid x \text{ is a real number}\}\)
- Range: \(\{y \mid y > -4\}\)
- Asymptote: \(y = -4\)
So the correct selection is:
- Domain: [tex]\(\{x \mid x \text{ is a real number}\}\)[/tex]; Range: [tex]\(\{y \mid y > -4\}\)[/tex]; Asymptote: [tex]\(y = -4\)[/tex]
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.