Discover answers to your questions with Westonci.ca, the leading Q&A platform that connects you with knowledgeable experts. Explore thousands of questions and answers from a knowledgeable community of experts ready to help you find solutions. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To determine the range of the function \( f(x) = \left(\frac{3}{4}\right)^x - 4 \), let's analyze the behavior of the function step-by-step.
1. Understand the function structure:
The given function is of the form \( f(x) = a^x - 4 \), where \( a \) is the base of the exponential function and in this case \( a = \frac{3}{4} \).
2. Behavior of the exponential term:
The exponential term is \( \left(\frac{3}{4}\right)^x \). Since \( \frac{3}{4} \) is less than 1:
- As \( x \) approaches positive infinity (\( x \to \infty \)), \( \left(\frac{3}{4}\right)^x \) approaches 0.
- As \( x \) approaches negative infinity (\( x \to -\infty \)), \( \left(\frac{3}{4}\right)^x \) grows very large because raising a fraction to a negative power results in a larger number.
3. Analyze the limits:
- When \( x \to \infty \):
\( f(x) = \left(\frac{3}{4}\right)^x - 4 \) approaches \( 0 - 4 = -4 \).
- When \( x \to -\infty \):
\( f(x) = \left(\frac{3}{4}\right)^x - 4 \) can be extremely large (since \( \left(\frac{3}{4}\right)^{-x} \) becomes very large as \( x \to -\infty \)) minus 4, but this value will still be large and positive.
4. Determine the range:
- From the analysis,
- \( f(x) \) approaches but never actually reaches -4, meaning \( f(x) \) is always greater than -4 as \( x \to \infty \).
- As \( x \to -\infty \), \( f(x) \) increases without bound.
Therefore, the output values of \( f(x) \) are all values greater than -4. Thus, the range of \( f(x) = \left(\frac{3}{4}\right)^x - 4 \) is:
[tex]\[ \{ y \mid y > -4 \} \][/tex]
So, the correct answer is:
[tex]\[ \{ y \mid y > -4 \} \][/tex]
1. Understand the function structure:
The given function is of the form \( f(x) = a^x - 4 \), where \( a \) is the base of the exponential function and in this case \( a = \frac{3}{4} \).
2. Behavior of the exponential term:
The exponential term is \( \left(\frac{3}{4}\right)^x \). Since \( \frac{3}{4} \) is less than 1:
- As \( x \) approaches positive infinity (\( x \to \infty \)), \( \left(\frac{3}{4}\right)^x \) approaches 0.
- As \( x \) approaches negative infinity (\( x \to -\infty \)), \( \left(\frac{3}{4}\right)^x \) grows very large because raising a fraction to a negative power results in a larger number.
3. Analyze the limits:
- When \( x \to \infty \):
\( f(x) = \left(\frac{3}{4}\right)^x - 4 \) approaches \( 0 - 4 = -4 \).
- When \( x \to -\infty \):
\( f(x) = \left(\frac{3}{4}\right)^x - 4 \) can be extremely large (since \( \left(\frac{3}{4}\right)^{-x} \) becomes very large as \( x \to -\infty \)) minus 4, but this value will still be large and positive.
4. Determine the range:
- From the analysis,
- \( f(x) \) approaches but never actually reaches -4, meaning \( f(x) \) is always greater than -4 as \( x \to \infty \).
- As \( x \to -\infty \), \( f(x) \) increases without bound.
Therefore, the output values of \( f(x) \) are all values greater than -4. Thus, the range of \( f(x) = \left(\frac{3}{4}\right)^x - 4 \) is:
[tex]\[ \{ y \mid y > -4 \} \][/tex]
So, the correct answer is:
[tex]\[ \{ y \mid y > -4 \} \][/tex]
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.