Looking for answers? Westonci.ca is your go-to Q&A platform, offering quick, trustworthy responses from a community of experts. Get quick and reliable solutions to your questions from a community of experienced experts on our platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To determine the original concentration of the hydrochloric acid (HCl) solution, we need to analyze the reaction between HCl and NaOH, which proceeds according to the following balanced chemical equation:
[tex]\[ \text{HCl} + \text{NaOH} \rightarrow \text{NaCl} + \text{H}_2\text{O} \][/tex]
Here are the detailed steps to find the concentration of the HCl solution:
1. Identify the volumes and concentration provided:
- Volume of HCl solution, \( V_{\text{HCl}} \) = 150 mL
- Volume of NaOH solution, \( V_{\text{NaOH}} \) = 60.0 mL
- Concentration of NaOH solution, \( C_{\text{NaOH}} \) = 0.100 M
2. Convert volumes from mL to L for consistency with molarity units:
- Volume of HCl in liters: \( V_{\text{HCl (L)}} = \frac{150 \text{ mL}}{1000} = 0.150 \text{ L} \)
- Volume of NaOH in liters: \( V_{\text{NaOH (L)}} = \frac{60.0 \text{ mL}}{1000} = 0.060 \text{ L} \)
3. Calculate the moles of NaOH used:
- Moles of NaOH, \( n_{\text{NaOH}} \) = \( C_{\text{NaOH}} \times V_{\text{NaOH (L)}} \)
- \( n_{\text{NaOH}} = 0.100 \text{ M} \times 0.060 \text{ L} = 0.006 \text{ moles} \)
4. Use the stoichiometry of the reaction to find moles of HCl reacted:
- According to the balanced equation, 1 mole of HCl reacts with 1 mole of NaOH. Therefore, the moles of HCl reacted will be equal to the moles of NaOH.
- Moles of HCl, \( n_{\text{HCl}} \) = 0.006 moles
5. Calculate the concentration of the HCl solution:
- Concentration of HCl, \( C_{\text{HCl}} \) = \( \frac{n_{\text{HCl}}}{V_{\text{HCl (L)}}} \)
- \( C_{\text{HCl}} = \frac{0.006 \text{ moles}}{0.150 \text{ L}} = 0.040 \text{ M} \)
Thus, the original concentration of the HCl solution is:
[tex]\[ \boxed{0.040 \text{ M}} \][/tex]
[tex]\[ \text{HCl} + \text{NaOH} \rightarrow \text{NaCl} + \text{H}_2\text{O} \][/tex]
Here are the detailed steps to find the concentration of the HCl solution:
1. Identify the volumes and concentration provided:
- Volume of HCl solution, \( V_{\text{HCl}} \) = 150 mL
- Volume of NaOH solution, \( V_{\text{NaOH}} \) = 60.0 mL
- Concentration of NaOH solution, \( C_{\text{NaOH}} \) = 0.100 M
2. Convert volumes from mL to L for consistency with molarity units:
- Volume of HCl in liters: \( V_{\text{HCl (L)}} = \frac{150 \text{ mL}}{1000} = 0.150 \text{ L} \)
- Volume of NaOH in liters: \( V_{\text{NaOH (L)}} = \frac{60.0 \text{ mL}}{1000} = 0.060 \text{ L} \)
3. Calculate the moles of NaOH used:
- Moles of NaOH, \( n_{\text{NaOH}} \) = \( C_{\text{NaOH}} \times V_{\text{NaOH (L)}} \)
- \( n_{\text{NaOH}} = 0.100 \text{ M} \times 0.060 \text{ L} = 0.006 \text{ moles} \)
4. Use the stoichiometry of the reaction to find moles of HCl reacted:
- According to the balanced equation, 1 mole of HCl reacts with 1 mole of NaOH. Therefore, the moles of HCl reacted will be equal to the moles of NaOH.
- Moles of HCl, \( n_{\text{HCl}} \) = 0.006 moles
5. Calculate the concentration of the HCl solution:
- Concentration of HCl, \( C_{\text{HCl}} \) = \( \frac{n_{\text{HCl}}}{V_{\text{HCl (L)}}} \)
- \( C_{\text{HCl}} = \frac{0.006 \text{ moles}}{0.150 \text{ L}} = 0.040 \text{ M} \)
Thus, the original concentration of the HCl solution is:
[tex]\[ \boxed{0.040 \text{ M}} \][/tex]
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.