Westonci.ca offers quick and accurate answers to your questions. Join our community and get the insights you need today. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To determine the multiplicative rate of change of the given exponential function \( y = a \cdot r^x \), we look at the ratios of consecutive \( y \) values for given \( x \) values. This is because, in an exponential function, each term is the previous term multiplied by a constant rate, \( r \).
Given:
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline 1 & \frac{3}{2} \\ \hline 2 & \frac{9}{8} \\ \hline 3 & \frac{27}{32} \\ \hline 4 & \frac{81}{128} \\ \hline \end{array} \][/tex]
To find \( r \), we calculate the ratio of \( y \) values using the following steps:
1. Calculate \( r \) from \( x = 1 \) and \( x = 2 \):
[tex]\[ r = \frac{y(2)}{y(1)} = \frac{\frac{9}{8}}{\frac{3}{2}} = \frac{9}{8} \times \frac{2}{3} = \frac{9 \cdot 2}{8 \cdot 3} = \frac{18}{24} = \frac{3}{4} \][/tex]
2. Calculate \( r \) from \( x = 2 \) and \( x = 3 \):
[tex]\[ r = \frac{y(3)}{y(2)} = \frac{\frac{27}{32}}{\frac{9}{8}} = \frac{27}{32} \times \frac{8}{9} = \frac{27 \cdot 8}{32 \cdot 9} = \frac{216}{288} = \frac{3}{4} \][/tex]
3. Calculate \( r \) from \( x = 3 \) and \( x = 4 \):
[tex]\[ r = \frac{y(4)}{y(3)} = \frac{\frac{81}{128}}{\frac{27}{32}} = \frac{81}{128} \times \frac{32}{27} = \frac{81 \cdot 32}{128 \cdot 27} = \frac{2592}{3456} = \frac{3}{4} \][/tex]
In each case, we find that the ratio \( r \) is constant and equals \( \frac{3}{4} \).
Thus, the multiplicative rate of change of the function is \( \frac{3}{4} \).
The correct answer is:
[tex]\(\boxed{\frac{3}{4}}\)[/tex]
Given:
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline 1 & \frac{3}{2} \\ \hline 2 & \frac{9}{8} \\ \hline 3 & \frac{27}{32} \\ \hline 4 & \frac{81}{128} \\ \hline \end{array} \][/tex]
To find \( r \), we calculate the ratio of \( y \) values using the following steps:
1. Calculate \( r \) from \( x = 1 \) and \( x = 2 \):
[tex]\[ r = \frac{y(2)}{y(1)} = \frac{\frac{9}{8}}{\frac{3}{2}} = \frac{9}{8} \times \frac{2}{3} = \frac{9 \cdot 2}{8 \cdot 3} = \frac{18}{24} = \frac{3}{4} \][/tex]
2. Calculate \( r \) from \( x = 2 \) and \( x = 3 \):
[tex]\[ r = \frac{y(3)}{y(2)} = \frac{\frac{27}{32}}{\frac{9}{8}} = \frac{27}{32} \times \frac{8}{9} = \frac{27 \cdot 8}{32 \cdot 9} = \frac{216}{288} = \frac{3}{4} \][/tex]
3. Calculate \( r \) from \( x = 3 \) and \( x = 4 \):
[tex]\[ r = \frac{y(4)}{y(3)} = \frac{\frac{81}{128}}{\frac{27}{32}} = \frac{81}{128} \times \frac{32}{27} = \frac{81 \cdot 32}{128 \cdot 27} = \frac{2592}{3456} = \frac{3}{4} \][/tex]
In each case, we find that the ratio \( r \) is constant and equals \( \frac{3}{4} \).
Thus, the multiplicative rate of change of the function is \( \frac{3}{4} \).
The correct answer is:
[tex]\(\boxed{\frac{3}{4}}\)[/tex]
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.