At Westonci.ca, we make it easy to get the answers you need from a community of informed and experienced contributors. Get quick and reliable solutions to your questions from a community of experienced professionals on our platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.

Select the correct answer.

The endpoints of [tex]\overline{GH}[/tex] are [tex]G(14, 3)[/tex] and [tex]H(10, -6)[/tex]. What is the midpoint of [tex]\overline{GH}[/tex]?

A. [tex](6, -15)[/tex]
B. [tex]\left(-2, -\frac{9}{2}\right)[/tex]
C. [tex]\left(12, -\frac{3}{2}\right)[/tex]
D. [tex](24, -3)[/tex]
E. [tex](18, 12)[/tex]


Sagot :

To find the midpoint of the line segment \(\overline{GH}\), we use the midpoint formula. The formula for the midpoint, \(M\), between two points \(G(x_1, y_1)\) and \(H(x_2, y_2)\) in a coordinate plane is given by:

[tex]\[ M = \left( \frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2} \right) \][/tex]

Given the endpoints \(G(14, 3)\) and \(H(10, -6)\), let's identify the coordinates clearly:
- \(G\) has coordinates \((x_1, y_1) = (14, 3)\)
- \(H\) has coordinates \((x_2, y_2) = (10, -6)\)

We substitute these coordinates into the midpoint formula:

1. Calculate the x-coordinate of the midpoint:
[tex]\[ \frac{x_1 + x_2}{2} = \frac{14 + 10}{2} = \frac{24}{2} = 12 \][/tex]

2. Calculate the y-coordinate of the midpoint:
[tex]\[ \frac{y_1 + y_2}{2} = \frac{3 + (-6)}{2} = \frac{3 - 6}{2} = \frac{-3}{2} = -1.5 \][/tex]

Therefore, the coordinates of the midpoint \(M\) are:
[tex]\[ M = \left(12, -1.5\right) \][/tex]

The correct answer is:
C. [tex]\(\left(12, -\frac{3}{2}\right)\)[/tex]