Westonci.ca makes finding answers easy, with a community of experts ready to provide you with the information you seek. Get detailed and accurate answers to your questions from a community of experts on our comprehensive Q&A platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To determine the maximum amount of magnesium oxide (\( \text{MgO} \)) that can be produced during a reaction where 3.2 grams of magnesium (\( \text{Mg} \)) react with 12.0 grams of oxygen (\( \text{O}_2 \)), we need to follow a step-by-step stoichiometric calculation based on the balanced chemical equation:
[tex]\[ 2 \text{Mg} + \text{O}_2 \rightarrow 2 \text{MgO} \][/tex]
### Step 1: Calculate the number of moles of each reactant.
Mass of Mg:
Given:
- Mass of Mg = 3.2 grams
- Molar mass of Mg = 24.305 g/mol
Moles of Mg:
[tex]\[ \text{moles of Mg} = \frac{\text{mass of Mg}}{\text{molar mass of Mg}} = \frac{3.2 \text{ g}}{24.305 \text{ g/mol}} \approx 0.13166 \text{ moles} \][/tex]
Mass of \( \text{O}_2 \):
Given:
- Mass of \( \text{O}_2 \) = 12.0 grams
- Molar mass of \( \text{O}_2 \) = 32.00 g/mol
Moles of \( \text{O}_2 \):
[tex]\[ \text{moles of } \text{O}_2 = \frac{\text{mass of } \text{O}_2}{\text{molar mass of } \text{O}_2} = \frac{12.0 \text{ g}}{32.00 \text{ g/mol}} = 0.375 \text{ moles} \][/tex]
### Step 2: Determine the limiting reactant.
According to the balanced equation:
[tex]\[ 2 \text{Mg} + \text{O}_2 \rightarrow 2 \text{MgO} \][/tex]
- 2 moles of Mg react with 1 mole of \( \text{O}_2 \).
Calculate the theoretical yield of \( \text{MgO} \) from each reactant.
#### Using Mg (assuming Mg is the limiting reactant):
- 1 mole of Mg produces 1 mole of \( \text{MgO} \).
[tex]\[ \text{Moles of } \text{MgO} \text{ produced (from Mg)} = \text{moles of Mg} = 0.13166 \text{ moles} \][/tex]
#### Using \( \text{O}_2 \) (assuming \( \text{O}_2 \) is the limiting reactant):
- 1 mole of \( \text{O}_2 \) produces 2 moles of \( \text{MgO} \).
[tex]\[ \text{Moles of } \text{MgO} \text{ produced (from } \text{O}_2 \text{) = 2} \times \text{moles of } \text{O}_2 = 2 \times 0.375 \text{ moles} = 0.75 \text{ moles} \][/tex]
The actual maximum moles of \( \text{MgO} \) produced are determined by the limiting reactant.
Since \( 0.13166 \text{ moles (from Mg)} < 0.75 \text{ moles (from } \text{O}_2 \text{)}\), Mg is the limiting reactant.
### Step 3: Calculate the mass of \( \text{MgO} \) produced.
Given:
- Molar mass of \( \text{MgO} \) = 40.305 g/mol
Mass of \( \text{MgO} \) produced:
[tex]\[ \text{mass of } \text{MgO} = \text{moles of } \text{MgO} \times \text{molar mass of } \text{MgO} = 0.13166 \text{ moles} \times 40.305 \text{ g/mol} \approx 5.31 \text{ grams} \][/tex]
### Step 4: Answer the question.
The maximum amount of magnesium oxide (\( \text{MgO} \)) that can be produced during the reaction is approximately 5.31 grams. Among the given options, this value is closest to 5.3 grams.
Therefore, the correct answer is:
5.3 grams
[tex]\[ 2 \text{Mg} + \text{O}_2 \rightarrow 2 \text{MgO} \][/tex]
### Step 1: Calculate the number of moles of each reactant.
Mass of Mg:
Given:
- Mass of Mg = 3.2 grams
- Molar mass of Mg = 24.305 g/mol
Moles of Mg:
[tex]\[ \text{moles of Mg} = \frac{\text{mass of Mg}}{\text{molar mass of Mg}} = \frac{3.2 \text{ g}}{24.305 \text{ g/mol}} \approx 0.13166 \text{ moles} \][/tex]
Mass of \( \text{O}_2 \):
Given:
- Mass of \( \text{O}_2 \) = 12.0 grams
- Molar mass of \( \text{O}_2 \) = 32.00 g/mol
Moles of \( \text{O}_2 \):
[tex]\[ \text{moles of } \text{O}_2 = \frac{\text{mass of } \text{O}_2}{\text{molar mass of } \text{O}_2} = \frac{12.0 \text{ g}}{32.00 \text{ g/mol}} = 0.375 \text{ moles} \][/tex]
### Step 2: Determine the limiting reactant.
According to the balanced equation:
[tex]\[ 2 \text{Mg} + \text{O}_2 \rightarrow 2 \text{MgO} \][/tex]
- 2 moles of Mg react with 1 mole of \( \text{O}_2 \).
Calculate the theoretical yield of \( \text{MgO} \) from each reactant.
#### Using Mg (assuming Mg is the limiting reactant):
- 1 mole of Mg produces 1 mole of \( \text{MgO} \).
[tex]\[ \text{Moles of } \text{MgO} \text{ produced (from Mg)} = \text{moles of Mg} = 0.13166 \text{ moles} \][/tex]
#### Using \( \text{O}_2 \) (assuming \( \text{O}_2 \) is the limiting reactant):
- 1 mole of \( \text{O}_2 \) produces 2 moles of \( \text{MgO} \).
[tex]\[ \text{Moles of } \text{MgO} \text{ produced (from } \text{O}_2 \text{) = 2} \times \text{moles of } \text{O}_2 = 2 \times 0.375 \text{ moles} = 0.75 \text{ moles} \][/tex]
The actual maximum moles of \( \text{MgO} \) produced are determined by the limiting reactant.
Since \( 0.13166 \text{ moles (from Mg)} < 0.75 \text{ moles (from } \text{O}_2 \text{)}\), Mg is the limiting reactant.
### Step 3: Calculate the mass of \( \text{MgO} \) produced.
Given:
- Molar mass of \( \text{MgO} \) = 40.305 g/mol
Mass of \( \text{MgO} \) produced:
[tex]\[ \text{mass of } \text{MgO} = \text{moles of } \text{MgO} \times \text{molar mass of } \text{MgO} = 0.13166 \text{ moles} \times 40.305 \text{ g/mol} \approx 5.31 \text{ grams} \][/tex]
### Step 4: Answer the question.
The maximum amount of magnesium oxide (\( \text{MgO} \)) that can be produced during the reaction is approximately 5.31 grams. Among the given options, this value is closest to 5.3 grams.
Therefore, the correct answer is:
5.3 grams
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.