Welcome to Westonci.ca, the ultimate question and answer platform. Get expert answers to your questions quickly and accurately. Find reliable answers to your questions from a wide community of knowledgeable experts on our user-friendly Q&A platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To solve for the volume of the oblique pyramid, let's follow the steps for calculating the volume using the provided details:
1. Identify the Given Values:
- The base area of the equilateral triangle is \( 12\sqrt{3} \ \text{cm}^2 \).
- The volume of the pyramid is also provided as \( 12\sqrt{3} \ \text{cm}^3 \).
2. Recall the Formula for the Volume of a Pyramid:
The formula for the volume \( V \) of a pyramid is given by:
[tex]\[ V = \frac{1}{3} \times \text{Base Area} \times \text{Height} \][/tex]
3. Plug in the Given Values:
- Volume \( V = 12\sqrt{3} \ \text{cm}^3 \)
- Base Area \( B = 12\sqrt{3} \ \text{cm}^2 \)
4. Solve for the Height:
To find the height \( h \) of the pyramid, we rearrange the volume formula:
[tex]\[ h = \frac{3V}{B} \][/tex]
5. Substitute the Values into the Height Formula:
[tex]\[ h = \frac{3 \times 12\sqrt{3}}{12\sqrt{3}} \][/tex]
Simplifying this expression, we find:
[tex]\[ h = \frac{36\sqrt{3}}{12\sqrt{3}} = 3 \ \text{cm} \][/tex]
So, with the given values and the formula for the volume of a pyramid, we have confirmed that the height of the pyramid is \( 3 \ \text{cm} \).
Finally, matching this with the given options for the volume
of the pyramid, we see that the correct volume given is indeed [tex]\( 12\sqrt{3} \ \text{cm}^3 \)[/tex].
1. Identify the Given Values:
- The base area of the equilateral triangle is \( 12\sqrt{3} \ \text{cm}^2 \).
- The volume of the pyramid is also provided as \( 12\sqrt{3} \ \text{cm}^3 \).
2. Recall the Formula for the Volume of a Pyramid:
The formula for the volume \( V \) of a pyramid is given by:
[tex]\[ V = \frac{1}{3} \times \text{Base Area} \times \text{Height} \][/tex]
3. Plug in the Given Values:
- Volume \( V = 12\sqrt{3} \ \text{cm}^3 \)
- Base Area \( B = 12\sqrt{3} \ \text{cm}^2 \)
4. Solve for the Height:
To find the height \( h \) of the pyramid, we rearrange the volume formula:
[tex]\[ h = \frac{3V}{B} \][/tex]
5. Substitute the Values into the Height Formula:
[tex]\[ h = \frac{3 \times 12\sqrt{3}}{12\sqrt{3}} \][/tex]
Simplifying this expression, we find:
[tex]\[ h = \frac{36\sqrt{3}}{12\sqrt{3}} = 3 \ \text{cm} \][/tex]
So, with the given values and the formula for the volume of a pyramid, we have confirmed that the height of the pyramid is \( 3 \ \text{cm} \).
Finally, matching this with the given options for the volume
of the pyramid, we see that the correct volume given is indeed [tex]\( 12\sqrt{3} \ \text{cm}^3 \)[/tex].
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.