Westonci.ca offers fast, accurate answers to your questions. Join our community and get the insights you need now. Explore in-depth answers to your questions from a knowledgeable community of experts across different fields. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.

Define the closure property and the additive inverse property of a polynomial with examples.

Sagot :

Final answer:

The closure property ensures operations on polynomials stay within the polynomial set, while the additive inverse property states each polynomial has an additive inverse resulting in 0.


Explanation:

Closure property in mathematics refers to the property that when you perform a certain operation on elements within a set, the result is also an element of that set. For polynomials, closure means that when you add, subtract, multiply, or divide two polynomials, the result is also a polynomial.

The additive inverse property of a polynomial states that for every polynomial P(x), there exists another polynomial -P(x) such that when added together, they give 0. For example, in the polynomial set, if P(x) = 2x^2 - 3x + 1, then the additive inverse is -P(x) = -2x^2 + 3x - 1.


Learn more about Closure and additive inverse properties of polynomials here:

https://brainly.com/question/29798483


Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.