Explore Westonci.ca, the leading Q&A site where experts provide accurate and helpful answers to all your questions. Our platform provides a seamless experience for finding precise answers from a network of experienced professionals. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To find the equation of the line passing through the origin and parallel to the line \(AB\) where \(A(-3,0)\) and \(B(-6,5)\), we need to follow these steps:
1. Determine the Slope of Line \(AB\):
The slope of a line passing through two points \((x_1, y_1)\) and \((x_2, y_2)\) is given by the formula:
[tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]
For the points \(A(-3,0)\) and \(B(-6,5)\):
[tex]\[ m = \frac{5 - 0}{-6 - (-3)} = \frac{5}{-3} = -\frac{5}{3} \][/tex]
2. Equation of a Line Parallel to \(AB\) Through the Origin:
Since parallel lines have the same slope, the slope of the line through the origin (which we will call L) is also \(-\frac{5}{3}\).
The equation of a line with slope \(m\) passing through the origin \((0, 0)\) is given by \(y = mx\):
[tex]\[ y = -\frac{5}{3}x \][/tex]
3. Convert the Equation to Standard Form:
To present the equation in the form \(Ax + By = 0\), we start with:
[tex]\[ y + \frac{5}{3}x = 0 \][/tex]
To clear the fraction, multiply every term by \(3\):
[tex]\[ 3y + 5x = 0 \][/tex]
4. Rearrange to Match Standard Form:
[tex]\[ 5x + 3y = 0 \][/tex]
Given this form \(5x + 3y = 0\), the correct answer to the equation of the line that passes through the origin and is parallel to line \(AB\) is:
A. [tex]\(5x + 3y = 0\)[/tex]
1. Determine the Slope of Line \(AB\):
The slope of a line passing through two points \((x_1, y_1)\) and \((x_2, y_2)\) is given by the formula:
[tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]
For the points \(A(-3,0)\) and \(B(-6,5)\):
[tex]\[ m = \frac{5 - 0}{-6 - (-3)} = \frac{5}{-3} = -\frac{5}{3} \][/tex]
2. Equation of a Line Parallel to \(AB\) Through the Origin:
Since parallel lines have the same slope, the slope of the line through the origin (which we will call L) is also \(-\frac{5}{3}\).
The equation of a line with slope \(m\) passing through the origin \((0, 0)\) is given by \(y = mx\):
[tex]\[ y = -\frac{5}{3}x \][/tex]
3. Convert the Equation to Standard Form:
To present the equation in the form \(Ax + By = 0\), we start with:
[tex]\[ y + \frac{5}{3}x = 0 \][/tex]
To clear the fraction, multiply every term by \(3\):
[tex]\[ 3y + 5x = 0 \][/tex]
4. Rearrange to Match Standard Form:
[tex]\[ 5x + 3y = 0 \][/tex]
Given this form \(5x + 3y = 0\), the correct answer to the equation of the line that passes through the origin and is parallel to line \(AB\) is:
A. [tex]\(5x + 3y = 0\)[/tex]
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.