Westonci.ca connects you with experts who provide insightful answers to your questions. Join us today and start learning! Our platform connects you with professionals ready to provide precise answers to all your questions in various areas of expertise. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To determine the volume of a [tex]$1.00 \, \text{M} \, \text{Fe}\left(\text{NO}_3\right)_3$[/tex] solution that can be diluted to prepare [tex]$1.00 \, \text{L}$[/tex] of a solution with a concentration of [tex]$0.250 \, \text{M}$[/tex], we can use the dilution formula:
[tex]\[ C_1 V_1 = C_2 V_2 \][/tex]
where:
- \( C_1 \) is the initial concentration ([tex]$1.00 \, \text{M}$[/tex]),
- \( V_1 \) is the initial volume (which we need to find),
- \( C_2 \) is the final concentration ([tex]$0.250 \, \text{M}$[/tex]),
- \( V_2 \) is the final volume ([tex]$1.00 \, \text{L}$[/tex]).
To find \( V_1 \), we rearrange the dilution formula to solve for \( V_1 \):
[tex]\[ V_1 = \frac{C_2 V_2}{C_1} \][/tex]
Now, substitute the given values into the equation:
[tex]\[ V_1 = \frac{(0.250 \, \text{M}) \times (1.00 \, \text{L})}{1.00 \, \text{M}} \][/tex]
[tex]\[ V_1 = \frac{0.250 \, \text{M}}{1.00 \, \text{M}} \times 1.00 \, \text{L} \][/tex]
[tex]\[ V_1 = 0.250 \, \text{L} \][/tex]
Thus, you need \(0.25 \, \text{L}\) (or 250 mL) of the [tex]$1.00 \, \text{M} \, \text{Fe}\left(\text{NO}_3\right)_3$[/tex] solution to prepare [tex]$1.00 \, \text{L}$[/tex] of a solution with a concentration of [tex]$0.250 \, \text{M}$[/tex].
To summarize, the initial volume [tex]\( V_1 \)[/tex] is [tex]\(0.25 \, \text{L}\)[/tex], so the required volume of [tex]$1.00 \, \text{M} \, \text{Fe}\left(\text{NO}_3\right)_3$[/tex] solution is [tex]\(0.25 \, \text{L}\)[/tex] to get a final volume [tex]\( V_2 \)[/tex] of [tex]\(1.00 \, \text{L}\)[/tex] with a concentration [tex]\( C_2 \)[/tex] of [tex]\(0.250 \, \text{M}\)[/tex].
[tex]\[ C_1 V_1 = C_2 V_2 \][/tex]
where:
- \( C_1 \) is the initial concentration ([tex]$1.00 \, \text{M}$[/tex]),
- \( V_1 \) is the initial volume (which we need to find),
- \( C_2 \) is the final concentration ([tex]$0.250 \, \text{M}$[/tex]),
- \( V_2 \) is the final volume ([tex]$1.00 \, \text{L}$[/tex]).
To find \( V_1 \), we rearrange the dilution formula to solve for \( V_1 \):
[tex]\[ V_1 = \frac{C_2 V_2}{C_1} \][/tex]
Now, substitute the given values into the equation:
[tex]\[ V_1 = \frac{(0.250 \, \text{M}) \times (1.00 \, \text{L})}{1.00 \, \text{M}} \][/tex]
[tex]\[ V_1 = \frac{0.250 \, \text{M}}{1.00 \, \text{M}} \times 1.00 \, \text{L} \][/tex]
[tex]\[ V_1 = 0.250 \, \text{L} \][/tex]
Thus, you need \(0.25 \, \text{L}\) (or 250 mL) of the [tex]$1.00 \, \text{M} \, \text{Fe}\left(\text{NO}_3\right)_3$[/tex] solution to prepare [tex]$1.00 \, \text{L}$[/tex] of a solution with a concentration of [tex]$0.250 \, \text{M}$[/tex].
To summarize, the initial volume [tex]\( V_1 \)[/tex] is [tex]\(0.25 \, \text{L}\)[/tex], so the required volume of [tex]$1.00 \, \text{M} \, \text{Fe}\left(\text{NO}_3\right)_3$[/tex] solution is [tex]\(0.25 \, \text{L}\)[/tex] to get a final volume [tex]\( V_2 \)[/tex] of [tex]\(1.00 \, \text{L}\)[/tex] with a concentration [tex]\( C_2 \)[/tex] of [tex]\(0.250 \, \text{M}\)[/tex].
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.