Westonci.ca is the ultimate Q&A platform, offering detailed and reliable answers from a knowledgeable community. Experience the ease of finding accurate answers to your questions from a knowledgeable community of professionals. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To determine which two points have an undefined slope, we need to understand what it means for a slope to be undefined. The slope between two points \((x_1, y_1)\) and \((x_2, y_2)\) is given by the formula:
[tex]\[ \text{slope} = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]
The slope is undefined when the denominator \(x_2 - x_1\) is zero, which happens when \(x_2 = x_1\). This means that the line is vertical.
Let's examine each of the given pairs of points:
Option A: \((-1,1)\) and \((1,-1)\)
- \(x_1 = -1\)
- \(x_2 = 1\)
- \(x_2 - x_1 = 1 - (-1) = 2\)
Since \(x_2 - x_1 \neq 0\), the slope is not undefined.
Option B: \((-2,2)\) and \((2,2)\)
- \(x_1 = -2\)
- \(x_2 = 2\)
- \(x_2 - x_1 = 2 - (-2) = 4\)
Since \(x_2 - x_1 \neq 0\), the slope is not undefined.
Option C: \((-3,-3)\) and \((-3,3)\)
- \(x_1 = -3\)
- \(x_2 = -3\)
- \(x_2 - x_1 = -3 - (-3) = 0\)
Since \(x_2 - x_1 = 0\), the slope is undefined.
Option D: \((-4,-4)\) and \((4,4)\)
- \(x_1 = -4\)
- \(x_2 = 4\)
- \(x_2 - x_1 = 4 - (-4) = 8\)
Since \(x_2 - x_1 \neq 0\), the slope is not undefined.
Based on the analysis, the correct answer is:
C. [tex]\((-3,-3)\)[/tex] and [tex]\((-3,3)\)[/tex]
[tex]\[ \text{slope} = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]
The slope is undefined when the denominator \(x_2 - x_1\) is zero, which happens when \(x_2 = x_1\). This means that the line is vertical.
Let's examine each of the given pairs of points:
Option A: \((-1,1)\) and \((1,-1)\)
- \(x_1 = -1\)
- \(x_2 = 1\)
- \(x_2 - x_1 = 1 - (-1) = 2\)
Since \(x_2 - x_1 \neq 0\), the slope is not undefined.
Option B: \((-2,2)\) and \((2,2)\)
- \(x_1 = -2\)
- \(x_2 = 2\)
- \(x_2 - x_1 = 2 - (-2) = 4\)
Since \(x_2 - x_1 \neq 0\), the slope is not undefined.
Option C: \((-3,-3)\) and \((-3,3)\)
- \(x_1 = -3\)
- \(x_2 = -3\)
- \(x_2 - x_1 = -3 - (-3) = 0\)
Since \(x_2 - x_1 = 0\), the slope is undefined.
Option D: \((-4,-4)\) and \((4,4)\)
- \(x_1 = -4\)
- \(x_2 = 4\)
- \(x_2 - x_1 = 4 - (-4) = 8\)
Since \(x_2 - x_1 \neq 0\), the slope is not undefined.
Based on the analysis, the correct answer is:
C. [tex]\((-3,-3)\)[/tex] and [tex]\((-3,3)\)[/tex]
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.