Welcome to Westonci.ca, the Q&A platform where your questions are met with detailed answers from experienced experts. Connect with a community of experts ready to help you find accurate solutions to your questions quickly and efficiently. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To determine which algebraic expressions are polynomials, we need to understand the basic definition of a polynomial. A polynomial in variables \(x\) and \(y\) is an expression that is formed using non-negative integer powers of \(x\) and \(y\) and involves only sums, differences, and constant multiples.
Let's analyze each of the given expressions to see if they meet this criterion:
1. Expression: \(\pi x - \sqrt{3} + 5 y\)
- Terms: \(\pi x\), \(- \sqrt{3}\), \(5 y\)
- Analysis:
- \(\pi x\) has the variable \(x\) with exponent 1.
- \(\sqrt{3}\) is a constant term and is valid in a polynomial.
- \(5 y\) has the variable \(y\) with exponent 1.
- None of these terms have negative or fractional exponents, and they are combined through addition and subtraction.
- Result: This is a polynomial.
2. Expression: \(x^2 y^2 - 4 x^3 + 12 y\)
- Terms: \(x^2 y^2\), \(-4 x^3\), \(12 y\)
- Analysis:
- \(x^2 y^2\) involves \(x\) and \(y\) with non-negative integer exponents.
- \(-4 x^3\) involves \(x\) with a non-negative integer exponent.
- \(12 y\) involves \(y\) with a non-negative integer exponent.
- All terms fit the definition of a polynomial.
- Result: This is a polynomial.
3. Expression: \(\frac{4}{x} - x^2\)
- Terms: \(\frac{4}{x}\), \(-x^2\)
- Analysis:
- \(\frac{4}{x}\) is equivalent to \(4x^{-1}\), which involves a negative exponent.
- \(-x^2\) involves \(x\) with a non-negative integer exponent.
- The presence of \(4x^{-1}\) makes the expression not a polynomial.
- Result: This is not a polynomial.
4. Expression: \(\sqrt{x} - 16\)
- Terms: \(\sqrt{x}\), \(-16\)
- Analysis:
- \(\sqrt{x}\) is equivalent to \(x^{1/2}\), which involves a fractional exponent.
- \(-16\) is a constant term and is valid in a polynomial.
- The presence of the term \(x^{1/2}\) (a fractional exponent) disqualifies this from being a polynomial.
- Result: This is not a polynomial.
5. Expression: \(3.9 x^3 - 4.1 x^2 + 7.3\)
- Terms: \(3.9 x^3\), \(-4.1 x^2\), \(7.3\)
- Analysis:
- \(3.9 x^3\) involves \(x\) with a non-negative integer exponent.
- \(-4.1 x^2\) involves \(x\) with a non-negative integer exponent.
- \(7.3\) is a constant term and is valid in a polynomial.
- All terms fit the definition of a polynomial.
- Result: This is a polynomial.
Summary:
The expressions that are polynomials are:
1. \(\pi x - \sqrt{3} + 5 y\)
2. \(x^2 y^2 - 4 x^3 + 12 y\)
5. \(3.9 x^3 - 4.1 x^2 + 7.3\)
The ones that are not polynomials are:
3. \(\frac{4}{x} - x^2\)
4. [tex]\(\sqrt{x} - 16\)[/tex]
Let's analyze each of the given expressions to see if they meet this criterion:
1. Expression: \(\pi x - \sqrt{3} + 5 y\)
- Terms: \(\pi x\), \(- \sqrt{3}\), \(5 y\)
- Analysis:
- \(\pi x\) has the variable \(x\) with exponent 1.
- \(\sqrt{3}\) is a constant term and is valid in a polynomial.
- \(5 y\) has the variable \(y\) with exponent 1.
- None of these terms have negative or fractional exponents, and they are combined through addition and subtraction.
- Result: This is a polynomial.
2. Expression: \(x^2 y^2 - 4 x^3 + 12 y\)
- Terms: \(x^2 y^2\), \(-4 x^3\), \(12 y\)
- Analysis:
- \(x^2 y^2\) involves \(x\) and \(y\) with non-negative integer exponents.
- \(-4 x^3\) involves \(x\) with a non-negative integer exponent.
- \(12 y\) involves \(y\) with a non-negative integer exponent.
- All terms fit the definition of a polynomial.
- Result: This is a polynomial.
3. Expression: \(\frac{4}{x} - x^2\)
- Terms: \(\frac{4}{x}\), \(-x^2\)
- Analysis:
- \(\frac{4}{x}\) is equivalent to \(4x^{-1}\), which involves a negative exponent.
- \(-x^2\) involves \(x\) with a non-negative integer exponent.
- The presence of \(4x^{-1}\) makes the expression not a polynomial.
- Result: This is not a polynomial.
4. Expression: \(\sqrt{x} - 16\)
- Terms: \(\sqrt{x}\), \(-16\)
- Analysis:
- \(\sqrt{x}\) is equivalent to \(x^{1/2}\), which involves a fractional exponent.
- \(-16\) is a constant term and is valid in a polynomial.
- The presence of the term \(x^{1/2}\) (a fractional exponent) disqualifies this from being a polynomial.
- Result: This is not a polynomial.
5. Expression: \(3.9 x^3 - 4.1 x^2 + 7.3\)
- Terms: \(3.9 x^3\), \(-4.1 x^2\), \(7.3\)
- Analysis:
- \(3.9 x^3\) involves \(x\) with a non-negative integer exponent.
- \(-4.1 x^2\) involves \(x\) with a non-negative integer exponent.
- \(7.3\) is a constant term and is valid in a polynomial.
- All terms fit the definition of a polynomial.
- Result: This is a polynomial.
Summary:
The expressions that are polynomials are:
1. \(\pi x - \sqrt{3} + 5 y\)
2. \(x^2 y^2 - 4 x^3 + 12 y\)
5. \(3.9 x^3 - 4.1 x^2 + 7.3\)
The ones that are not polynomials are:
3. \(\frac{4}{x} - x^2\)
4. [tex]\(\sqrt{x} - 16\)[/tex]
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.