Explore Westonci.ca, the top Q&A platform where your questions are answered by professionals and enthusiasts alike. Connect with a community of experts ready to provide precise solutions to your questions on our user-friendly Q&A platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
Sure! Let's find out Kyle's kinetic energy using the given formula.
1. Identify the known values:
- Mass \( m \) of Kyle: \( 54 \) kg
- Velocity \( v \) at which Kyle is jogging: \( 3 \) m/s
2. Recall the formula for kinetic energy:
The formula to calculate kinetic energy (KE) is:
[tex]\[ KE = \frac{1}{2} m v^2 \][/tex]
3. Substitute the known values into the formula:
[tex]\[ KE = \frac{1}{2} \times 54 \, \text{kg} \times (3 \, \text{m/s})^2 \][/tex]
4. Perform the squared term first (order of operations):
[tex]\[ KE = \frac{1}{2} \times 54 \, \text{kg} \times 9 \, \text{m}^2/\text{s}^2 \][/tex]
Here, \( 3 \, \text{m/s} \) squared is \( 9 \, \text{m}^2/\text{s}^2 \).
5. Multiply the mass by the squared velocity:
[tex]\[ KE = \frac{1}{2} \times 486 \, \text{kg}\,\text{m}^2/\text{s}^2 \][/tex]
6. Finally, multiply by \(\frac{1}{2}\):
[tex]\[ KE = 243 \, \text{J} \][/tex]
Kyle's kinetic energy is \( 243 \) Joules. Thus, the correct answer is:
[tex]\[ \boxed{243 \, \text{J}} \][/tex]
1. Identify the known values:
- Mass \( m \) of Kyle: \( 54 \) kg
- Velocity \( v \) at which Kyle is jogging: \( 3 \) m/s
2. Recall the formula for kinetic energy:
The formula to calculate kinetic energy (KE) is:
[tex]\[ KE = \frac{1}{2} m v^2 \][/tex]
3. Substitute the known values into the formula:
[tex]\[ KE = \frac{1}{2} \times 54 \, \text{kg} \times (3 \, \text{m/s})^2 \][/tex]
4. Perform the squared term first (order of operations):
[tex]\[ KE = \frac{1}{2} \times 54 \, \text{kg} \times 9 \, \text{m}^2/\text{s}^2 \][/tex]
Here, \( 3 \, \text{m/s} \) squared is \( 9 \, \text{m}^2/\text{s}^2 \).
5. Multiply the mass by the squared velocity:
[tex]\[ KE = \frac{1}{2} \times 486 \, \text{kg}\,\text{m}^2/\text{s}^2 \][/tex]
6. Finally, multiply by \(\frac{1}{2}\):
[tex]\[ KE = 243 \, \text{J} \][/tex]
Kyle's kinetic energy is \( 243 \) Joules. Thus, the correct answer is:
[tex]\[ \boxed{243 \, \text{J}} \][/tex]
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.