At Westonci.ca, we connect you with the best answers from a community of experienced and knowledgeable individuals. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.

Select the correct answer.

The coordinates of point \( J \) are \((-7,2)\), and the midpoint of \(\overline{JK}\) is at \( L(3,5) \). What are the coordinates of point \( K \)?

A. \((13,8)\)
B. \((1,-2)\)
C. \((8,3)\)
D. [tex]\((-1,12)\)[/tex]


Sagot :

Let's find the coordinates of point \( K \) given that the coordinates of point \( J \) are \( (-7,2) \) and the midpoint \( L \) of \( \overline{JK} \) is at \( (3,5) \).

To solve this, we use the midpoint formula. The midpoint formula states that the coordinates of the midpoint \( L \) of a segment with endpoints \( J(x_1, y_1) \) and \( K(x_2, y_2) \) are given by:
[tex]\[ L_x = \frac{x_1 + x_2}{2} \][/tex]
[tex]\[ L_y = \frac{y_1 + y_2}{2} \][/tex]

Given:
- The coordinates of \( J(x_1, y_1) \) = \((-7,2)\)
- The coordinates of midpoint \( L(L_x, L_y) \) = \((3,5)\)

We need to find the coordinates of \( K(x_2, y_2) \).

Since we know \( L_x \) is the average of \( x_1 \) and \( x_2 \):
[tex]\[ 3 = \frac{-7 + x_2}{2} \][/tex]

Multiplying both sides by 2 to solve for \( x_2 \):
[tex]\[ 6 = -7 + x_2 \][/tex]
[tex]\[ x_2 = 6 + 7 \][/tex]
[tex]\[ x_2 = 13 \][/tex]

Similarly, for \( L_y \):
[tex]\[ 5 = \frac{2 + y_2}{2} \][/tex]

Multiplying both sides by 2 to solve for \( y_2 \):
[tex]\[ 10 = 2 + y_2 \][/tex]
[tex]\[ y_2 = 10 - 2 \][/tex]
[tex]\[ y_2 = 8 \][/tex]

Therefore, the coordinates of point \( K \) are \((13, 8)\).

So, the correct answer is:
A. [tex]\((13,8)\)[/tex]