Welcome to Westonci.ca, your ultimate destination for finding answers to a wide range of questions from experts. Join our Q&A platform and get accurate answers to all your questions from professionals across multiple disciplines. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
Let's analyze each feature one by one to evaluate the correctness of the student's findings for the function \( f(x) = 2^x - 4 \).
### 1. Increasing:
The function \( f(x) = 2^x - 4 \) is indeed increasing. This is because the exponential function \( 2^x \) is always increasing, and subtracting a constant (in this case, 4) does not change the increasing nature of the function.
Verdict: Correct
### 2. Positive for \( x > -3 \):
To determine where the function \( f(x) = 2^x - 4 \) is positive, we solve:
[tex]\[ 2^x - 4 > 0 \][/tex]
[tex]\[ 2^x > 4 \][/tex]
Taking the logarithm (base 2) on both sides:
[tex]\[ x > 2 \][/tex]
Therefore, the function \( f(x) = 2^x - 4 \) is positive for \( x > 2 \), not for \( x > -3 \).
Verdict: Incorrect
### 3. Negative for \( x < 2 \):
To determine where the function \( f(x) = 2^x - 4 \) is negative, we solve:
[tex]\[ 2^x - 4 < 0 \][/tex]
[tex]\[ 2^x < 4 \][/tex]
Taking the logarithm (base 2) on both sides:
[tex]\[ x < 2 \][/tex]
Therefore, the function \( f(x) = 2^x - 4 \) is negative for \( x < 2 \).
Verdict: Correct
### 4. As \( x \) approaches negative infinity, \( f(x) \) approaches -4:
For very large negative values of \( x \), the value \( 2^x \) approaches 0. Thus:
[tex]\[ f(x) = 2^x - 4 \][/tex]
[tex]\[ \lim_{x \to -\infty} (2^x - 4) = -4 \][/tex]
Verdict: Correct
### 5. As \( x \) approaches positive infinity, \( f(x) \) approaches 4:
For very large positive values of \( x \), the value of \( 2^x \) grows without bound. Thus:
[tex]\[ f(x) = 2^x - 4 \][/tex]
[tex]\[ \lim_{x \to \infty} (2^x - 4) = \infty \][/tex]
Therefore, as \( x \) approaches positive infinity, \( f(x) \) approaches positive infinity, not 4.
Verdict: Incorrect
### Summary:
The student incorrectly identified two key features:
- The function is positive for \( x > 2 \), not \( x > -3 \).
- As \( x \) approaches positive infinity, \( f(x) \) approaches positive infinity, not 4.
The remaining key features identified by the student are correct.
### 1. Increasing:
The function \( f(x) = 2^x - 4 \) is indeed increasing. This is because the exponential function \( 2^x \) is always increasing, and subtracting a constant (in this case, 4) does not change the increasing nature of the function.
Verdict: Correct
### 2. Positive for \( x > -3 \):
To determine where the function \( f(x) = 2^x - 4 \) is positive, we solve:
[tex]\[ 2^x - 4 > 0 \][/tex]
[tex]\[ 2^x > 4 \][/tex]
Taking the logarithm (base 2) on both sides:
[tex]\[ x > 2 \][/tex]
Therefore, the function \( f(x) = 2^x - 4 \) is positive for \( x > 2 \), not for \( x > -3 \).
Verdict: Incorrect
### 3. Negative for \( x < 2 \):
To determine where the function \( f(x) = 2^x - 4 \) is negative, we solve:
[tex]\[ 2^x - 4 < 0 \][/tex]
[tex]\[ 2^x < 4 \][/tex]
Taking the logarithm (base 2) on both sides:
[tex]\[ x < 2 \][/tex]
Therefore, the function \( f(x) = 2^x - 4 \) is negative for \( x < 2 \).
Verdict: Correct
### 4. As \( x \) approaches negative infinity, \( f(x) \) approaches -4:
For very large negative values of \( x \), the value \( 2^x \) approaches 0. Thus:
[tex]\[ f(x) = 2^x - 4 \][/tex]
[tex]\[ \lim_{x \to -\infty} (2^x - 4) = -4 \][/tex]
Verdict: Correct
### 5. As \( x \) approaches positive infinity, \( f(x) \) approaches 4:
For very large positive values of \( x \), the value of \( 2^x \) grows without bound. Thus:
[tex]\[ f(x) = 2^x - 4 \][/tex]
[tex]\[ \lim_{x \to \infty} (2^x - 4) = \infty \][/tex]
Therefore, as \( x \) approaches positive infinity, \( f(x) \) approaches positive infinity, not 4.
Verdict: Incorrect
### Summary:
The student incorrectly identified two key features:
- The function is positive for \( x > 2 \), not \( x > -3 \).
- As \( x \) approaches positive infinity, \( f(x) \) approaches positive infinity, not 4.
The remaining key features identified by the student are correct.
We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.