Discover answers to your most pressing questions at Westonci.ca, the ultimate Q&A platform that connects you with expert solutions. Get accurate and detailed answers to your questions from a dedicated community of experts on our Q&A platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To determine which function gives the volume of the sphere at time \( t \), let's break down the problem step by step:
1. Given Information:
- The volume of a sphere is given by the function \( V(r) = \frac{4}{3} \pi r^3 \).
- The radius is increasing at a rate of \( 2 \) mm per second.
- The radius as a function of time is \( r(t) = 2t \).
2. Finding the Volume as a Function of Time:
- To find the volume at time \( t \), we need to express the volume function in terms of time \( t \).
- We know \( r(t) = 2t \).
3. Using the Composite Function:
- The volume \( V \) depends on \( r \), and \( r \) depends on \( t \).
- We need to find \( V(r(t)) \), which is the composite function \((V \circ r)(t)\).
- Substitute \( r(t) = 2t \) into \( V(r) \):
[tex]\[ V(2t) = \frac{4}{3} \pi (2t)^3 \][/tex]
- Simplify the expression:
[tex]\[ V(2t) = \frac{4}{3} \pi \cdot 8 t^3 = \frac{32}{3} \pi t^3 \][/tex]
4. Conclusion:
- The volume of the sphere as a function of time \( t \) is \( V(t) = \frac{32}{3} \pi t^3 \).
Given the explanation and the steps we followed to determine the correct function, we see that the volume at time \( t \) is represented by the composite function \((V \circ r)(t)\).
Thus, the correct choice is:
A. [tex]\((V \circ r)(t)\)[/tex]
1. Given Information:
- The volume of a sphere is given by the function \( V(r) = \frac{4}{3} \pi r^3 \).
- The radius is increasing at a rate of \( 2 \) mm per second.
- The radius as a function of time is \( r(t) = 2t \).
2. Finding the Volume as a Function of Time:
- To find the volume at time \( t \), we need to express the volume function in terms of time \( t \).
- We know \( r(t) = 2t \).
3. Using the Composite Function:
- The volume \( V \) depends on \( r \), and \( r \) depends on \( t \).
- We need to find \( V(r(t)) \), which is the composite function \((V \circ r)(t)\).
- Substitute \( r(t) = 2t \) into \( V(r) \):
[tex]\[ V(2t) = \frac{4}{3} \pi (2t)^3 \][/tex]
- Simplify the expression:
[tex]\[ V(2t) = \frac{4}{3} \pi \cdot 8 t^3 = \frac{32}{3} \pi t^3 \][/tex]
4. Conclusion:
- The volume of the sphere as a function of time \( t \) is \( V(t) = \frac{32}{3} \pi t^3 \).
Given the explanation and the steps we followed to determine the correct function, we see that the volume at time \( t \) is represented by the composite function \((V \circ r)(t)\).
Thus, the correct choice is:
A. [tex]\((V \circ r)(t)\)[/tex]
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.