Westonci.ca is your trusted source for finding answers to a wide range of questions, backed by a knowledgeable community. Explore a wealth of knowledge from professionals across various disciplines on our comprehensive Q&A platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To determine which function gives the volume of the sphere at time \( t \), let's break down the problem step by step:
1. Given Information:
- The volume of a sphere is given by the function \( V(r) = \frac{4}{3} \pi r^3 \).
- The radius is increasing at a rate of \( 2 \) mm per second.
- The radius as a function of time is \( r(t) = 2t \).
2. Finding the Volume as a Function of Time:
- To find the volume at time \( t \), we need to express the volume function in terms of time \( t \).
- We know \( r(t) = 2t \).
3. Using the Composite Function:
- The volume \( V \) depends on \( r \), and \( r \) depends on \( t \).
- We need to find \( V(r(t)) \), which is the composite function \((V \circ r)(t)\).
- Substitute \( r(t) = 2t \) into \( V(r) \):
[tex]\[ V(2t) = \frac{4}{3} \pi (2t)^3 \][/tex]
- Simplify the expression:
[tex]\[ V(2t) = \frac{4}{3} \pi \cdot 8 t^3 = \frac{32}{3} \pi t^3 \][/tex]
4. Conclusion:
- The volume of the sphere as a function of time \( t \) is \( V(t) = \frac{32}{3} \pi t^3 \).
Given the explanation and the steps we followed to determine the correct function, we see that the volume at time \( t \) is represented by the composite function \((V \circ r)(t)\).
Thus, the correct choice is:
A. [tex]\((V \circ r)(t)\)[/tex]
1. Given Information:
- The volume of a sphere is given by the function \( V(r) = \frac{4}{3} \pi r^3 \).
- The radius is increasing at a rate of \( 2 \) mm per second.
- The radius as a function of time is \( r(t) = 2t \).
2. Finding the Volume as a Function of Time:
- To find the volume at time \( t \), we need to express the volume function in terms of time \( t \).
- We know \( r(t) = 2t \).
3. Using the Composite Function:
- The volume \( V \) depends on \( r \), and \( r \) depends on \( t \).
- We need to find \( V(r(t)) \), which is the composite function \((V \circ r)(t)\).
- Substitute \( r(t) = 2t \) into \( V(r) \):
[tex]\[ V(2t) = \frac{4}{3} \pi (2t)^3 \][/tex]
- Simplify the expression:
[tex]\[ V(2t) = \frac{4}{3} \pi \cdot 8 t^3 = \frac{32}{3} \pi t^3 \][/tex]
4. Conclusion:
- The volume of the sphere as a function of time \( t \) is \( V(t) = \frac{32}{3} \pi t^3 \).
Given the explanation and the steps we followed to determine the correct function, we see that the volume at time \( t \) is represented by the composite function \((V \circ r)(t)\).
Thus, the correct choice is:
A. [tex]\((V \circ r)(t)\)[/tex]
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.