Discover answers to your questions with Westonci.ca, the leading Q&A platform that connects you with knowledgeable experts. Discover in-depth solutions to your questions from a wide range of experts on our user-friendly Q&A platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To determine which number produces a rational number when added to \(\frac{1}{2}\), let's consider the definitions and properties of rational and irrational numbers.
Step 1: Understanding Rational and Irrational Numbers
- A rational number is a number that can be expressed as the quotient of two integers, i.e., \(\frac{p}{q}\), where \(p\) and \(q\) are integers and \(q \neq 0\).
- An irrational number is a number that cannot be expressed as a simple fraction, meaning it cannot be written as \(\frac{p}{q}\). Common examples include \(\pi\) and \(\sqrt{12}\).
Step 2: Evaluating Each Option
Option A: \(\pi\)
\(\pi\) is a well-known irrational number. Adding an irrational number to a rational number yields an irrational result:
[tex]\[ \pi + \frac{1}{2} \text{ is irrational.} \][/tex]
Option B: \(\sqrt{12}\)
\(\sqrt{12}\) can be simplified to \(2\sqrt{3}\) and is also irrational. Hence:
[tex]\[ \sqrt{12} + \frac{1}{2} \text{ is irrational.} \][/tex]
Option C: 0.314
This number is written in decimal form and terminates. Any terminating decimal or repeating decimal is a rational number, so:
[tex]\[ 0.314 + \frac{1}{2} \text{ is rational.} \][/tex]
Option D: \(4.35889894 \ldots\)
If this number represents a non-repeating, non-terminating decimal, it is irrational. Therefore:
[tex]\[ 4.35889894 \ldots + \frac{1}{2} \text{ is irrational.} \][/tex]
Step 3: Conclusion
Among the given options, the only number that, when added to \(\frac{1}{2}\), produces a rational number is:
[tex]\[ \boxed{0.314} \][/tex]
Therefore, the number that produces a rational number when added to [tex]\(\frac{1}{2}\)[/tex] is [tex]\(0.314\)[/tex].
Step 1: Understanding Rational and Irrational Numbers
- A rational number is a number that can be expressed as the quotient of two integers, i.e., \(\frac{p}{q}\), where \(p\) and \(q\) are integers and \(q \neq 0\).
- An irrational number is a number that cannot be expressed as a simple fraction, meaning it cannot be written as \(\frac{p}{q}\). Common examples include \(\pi\) and \(\sqrt{12}\).
Step 2: Evaluating Each Option
Option A: \(\pi\)
\(\pi\) is a well-known irrational number. Adding an irrational number to a rational number yields an irrational result:
[tex]\[ \pi + \frac{1}{2} \text{ is irrational.} \][/tex]
Option B: \(\sqrt{12}\)
\(\sqrt{12}\) can be simplified to \(2\sqrt{3}\) and is also irrational. Hence:
[tex]\[ \sqrt{12} + \frac{1}{2} \text{ is irrational.} \][/tex]
Option C: 0.314
This number is written in decimal form and terminates. Any terminating decimal or repeating decimal is a rational number, so:
[tex]\[ 0.314 + \frac{1}{2} \text{ is rational.} \][/tex]
Option D: \(4.35889894 \ldots\)
If this number represents a non-repeating, non-terminating decimal, it is irrational. Therefore:
[tex]\[ 4.35889894 \ldots + \frac{1}{2} \text{ is irrational.} \][/tex]
Step 3: Conclusion
Among the given options, the only number that, when added to \(\frac{1}{2}\), produces a rational number is:
[tex]\[ \boxed{0.314} \][/tex]
Therefore, the number that produces a rational number when added to [tex]\(\frac{1}{2}\)[/tex] is [tex]\(0.314\)[/tex].
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.