Westonci.ca makes finding answers easy, with a community of experts ready to provide you with the information you seek. Get the answers you need quickly and accurately from a dedicated community of experts on our Q&A platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.

Consider the reaction:

[tex]\[ 2 HF (g) \longleftrightarrow H_2 (g) + F_2 (g) \][/tex]

At equilibrium at \( 600 \, K \), the concentrations are as follows:

[tex]\[
\begin{array}{l}
{[ HF ]=5.82 \times 10^{-2} \, M } \\
{\left[ H_2 \right] = 8.4 \times 10^{-3} \, M } \\
{\left[ F_2 \right] = 8.4 \times 10^{-3} \, M }
\end{array}
\][/tex]

What is the value of \( K_{\text{eq}} \) for the reaction?

A. \( 2.1 \times 10^{-2} \)

B. \( 2.1 \times 10^2 \)

C. \( 1.2 \times 10^3 \)

D. [tex]\( 1.2 \times 10^{-3} \)[/tex]


Sagot :

To determine the equilibrium constant \( K_{\text{eq}} \) for the reaction

[tex]\[ 2 HF (g) \longleftrightarrow H_2(g) + F_2(g) \][/tex]

at 600 K, given the equilibrium concentrations of the reactants and products, we can use the expression for the equilibrium constant for a gaseous reaction:

[tex]\[ K_{\text{eq}} = \frac{[H_2][F_2]}{[HF]^2} \][/tex]

Where:
- \([HF] = 5.82 \times 10^{-2} \text{ M}\)
- \([H_2] = 8.4 \times 10^{-3} \text{ M}\)
- \([F_2] = 8.4 \times 10^{-3} \text{ M}\)

Now, let's plug these concentrations into the equilibrium constant expression:

[tex]\[ K_{\text{eq}} = \frac{(8.4 \times 10^{-3})(8.4 \times 10^{-3})}{(5.82 \times 10^{-2})^2} \][/tex]

Calculating the numerator:

[tex]\[ (8.4 \times 10^{-3}) \times (8.4 \times 10^{-3}) = 8.4^2 \times 10^{-6} = 70.56 \times 10^{-6} = 7.056 \times 10^{-5} \][/tex]

Calculating the denominator:

[tex]\[ (5.82 \times 10^{-2})^2 = 5.82^2 \times 10^{-4} = 33.8724 \times 10^{-4} = 3.38724 \times 10^{-3} \][/tex]

Now, dividing the numerator by the denominator:

[tex]\[ K_{\text{eq}} = \frac{7.056 \times 10^{-5}}{3.38724 \times 10^{-3}} \][/tex]

[tex]\[ K_{\text{eq}} = \frac{7.056}{3.38724} \times 10^{-5+3} \][/tex]

[tex]\[ K_{\text{eq}} \approx 2.0831 \times 10^{-2} \][/tex]

So, the calculated value of \( K_{\text{eq}} \) is approximately \( 2.0831 \times 10^{-2} \).

Among the given options, the value that matches closely is:

[tex]\[ 2.1 \times 10^{-2} \][/tex]

Therefore, the value of \( K_{\text{eq}} \) for the reaction at 600 K is:

[tex]\[ 2.1 \times 10^{-2} \][/tex]