Westonci.ca offers quick and accurate answers to your questions. Join our community and get the insights you need today. Get quick and reliable solutions to your questions from a community of experienced professionals on our platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To determine the equilibrium constant \( K_{\text{eq}} \) for the reaction
[tex]\[ 2 HF (g) \longleftrightarrow H_2(g) + F_2(g) \][/tex]
at 600 K, given the equilibrium concentrations of the reactants and products, we can use the expression for the equilibrium constant for a gaseous reaction:
[tex]\[ K_{\text{eq}} = \frac{[H_2][F_2]}{[HF]^2} \][/tex]
Where:
- \([HF] = 5.82 \times 10^{-2} \text{ M}\)
- \([H_2] = 8.4 \times 10^{-3} \text{ M}\)
- \([F_2] = 8.4 \times 10^{-3} \text{ M}\)
Now, let's plug these concentrations into the equilibrium constant expression:
[tex]\[ K_{\text{eq}} = \frac{(8.4 \times 10^{-3})(8.4 \times 10^{-3})}{(5.82 \times 10^{-2})^2} \][/tex]
Calculating the numerator:
[tex]\[ (8.4 \times 10^{-3}) \times (8.4 \times 10^{-3}) = 8.4^2 \times 10^{-6} = 70.56 \times 10^{-6} = 7.056 \times 10^{-5} \][/tex]
Calculating the denominator:
[tex]\[ (5.82 \times 10^{-2})^2 = 5.82^2 \times 10^{-4} = 33.8724 \times 10^{-4} = 3.38724 \times 10^{-3} \][/tex]
Now, dividing the numerator by the denominator:
[tex]\[ K_{\text{eq}} = \frac{7.056 \times 10^{-5}}{3.38724 \times 10^{-3}} \][/tex]
[tex]\[ K_{\text{eq}} = \frac{7.056}{3.38724} \times 10^{-5+3} \][/tex]
[tex]\[ K_{\text{eq}} \approx 2.0831 \times 10^{-2} \][/tex]
So, the calculated value of \( K_{\text{eq}} \) is approximately \( 2.0831 \times 10^{-2} \).
Among the given options, the value that matches closely is:
[tex]\[ 2.1 \times 10^{-2} \][/tex]
Therefore, the value of \( K_{\text{eq}} \) for the reaction at 600 K is:
[tex]\[ 2.1 \times 10^{-2} \][/tex]
[tex]\[ 2 HF (g) \longleftrightarrow H_2(g) + F_2(g) \][/tex]
at 600 K, given the equilibrium concentrations of the reactants and products, we can use the expression for the equilibrium constant for a gaseous reaction:
[tex]\[ K_{\text{eq}} = \frac{[H_2][F_2]}{[HF]^2} \][/tex]
Where:
- \([HF] = 5.82 \times 10^{-2} \text{ M}\)
- \([H_2] = 8.4 \times 10^{-3} \text{ M}\)
- \([F_2] = 8.4 \times 10^{-3} \text{ M}\)
Now, let's plug these concentrations into the equilibrium constant expression:
[tex]\[ K_{\text{eq}} = \frac{(8.4 \times 10^{-3})(8.4 \times 10^{-3})}{(5.82 \times 10^{-2})^2} \][/tex]
Calculating the numerator:
[tex]\[ (8.4 \times 10^{-3}) \times (8.4 \times 10^{-3}) = 8.4^2 \times 10^{-6} = 70.56 \times 10^{-6} = 7.056 \times 10^{-5} \][/tex]
Calculating the denominator:
[tex]\[ (5.82 \times 10^{-2})^2 = 5.82^2 \times 10^{-4} = 33.8724 \times 10^{-4} = 3.38724 \times 10^{-3} \][/tex]
Now, dividing the numerator by the denominator:
[tex]\[ K_{\text{eq}} = \frac{7.056 \times 10^{-5}}{3.38724 \times 10^{-3}} \][/tex]
[tex]\[ K_{\text{eq}} = \frac{7.056}{3.38724} \times 10^{-5+3} \][/tex]
[tex]\[ K_{\text{eq}} \approx 2.0831 \times 10^{-2} \][/tex]
So, the calculated value of \( K_{\text{eq}} \) is approximately \( 2.0831 \times 10^{-2} \).
Among the given options, the value that matches closely is:
[tex]\[ 2.1 \times 10^{-2} \][/tex]
Therefore, the value of \( K_{\text{eq}} \) for the reaction at 600 K is:
[tex]\[ 2.1 \times 10^{-2} \][/tex]
We hope this was helpful. Please come back whenever you need more information or answers to your queries. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.