Westonci.ca makes finding answers easy, with a community of experts ready to provide you with the information you seek. Get the answers you need quickly and accurately from a dedicated community of experts on our Q&A platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To determine the equilibrium constant \( K_{\text{eq}} \) for the reaction
[tex]\[ 2 HF (g) \longleftrightarrow H_2(g) + F_2(g) \][/tex]
at 600 K, given the equilibrium concentrations of the reactants and products, we can use the expression for the equilibrium constant for a gaseous reaction:
[tex]\[ K_{\text{eq}} = \frac{[H_2][F_2]}{[HF]^2} \][/tex]
Where:
- \([HF] = 5.82 \times 10^{-2} \text{ M}\)
- \([H_2] = 8.4 \times 10^{-3} \text{ M}\)
- \([F_2] = 8.4 \times 10^{-3} \text{ M}\)
Now, let's plug these concentrations into the equilibrium constant expression:
[tex]\[ K_{\text{eq}} = \frac{(8.4 \times 10^{-3})(8.4 \times 10^{-3})}{(5.82 \times 10^{-2})^2} \][/tex]
Calculating the numerator:
[tex]\[ (8.4 \times 10^{-3}) \times (8.4 \times 10^{-3}) = 8.4^2 \times 10^{-6} = 70.56 \times 10^{-6} = 7.056 \times 10^{-5} \][/tex]
Calculating the denominator:
[tex]\[ (5.82 \times 10^{-2})^2 = 5.82^2 \times 10^{-4} = 33.8724 \times 10^{-4} = 3.38724 \times 10^{-3} \][/tex]
Now, dividing the numerator by the denominator:
[tex]\[ K_{\text{eq}} = \frac{7.056 \times 10^{-5}}{3.38724 \times 10^{-3}} \][/tex]
[tex]\[ K_{\text{eq}} = \frac{7.056}{3.38724} \times 10^{-5+3} \][/tex]
[tex]\[ K_{\text{eq}} \approx 2.0831 \times 10^{-2} \][/tex]
So, the calculated value of \( K_{\text{eq}} \) is approximately \( 2.0831 \times 10^{-2} \).
Among the given options, the value that matches closely is:
[tex]\[ 2.1 \times 10^{-2} \][/tex]
Therefore, the value of \( K_{\text{eq}} \) for the reaction at 600 K is:
[tex]\[ 2.1 \times 10^{-2} \][/tex]
[tex]\[ 2 HF (g) \longleftrightarrow H_2(g) + F_2(g) \][/tex]
at 600 K, given the equilibrium concentrations of the reactants and products, we can use the expression for the equilibrium constant for a gaseous reaction:
[tex]\[ K_{\text{eq}} = \frac{[H_2][F_2]}{[HF]^2} \][/tex]
Where:
- \([HF] = 5.82 \times 10^{-2} \text{ M}\)
- \([H_2] = 8.4 \times 10^{-3} \text{ M}\)
- \([F_2] = 8.4 \times 10^{-3} \text{ M}\)
Now, let's plug these concentrations into the equilibrium constant expression:
[tex]\[ K_{\text{eq}} = \frac{(8.4 \times 10^{-3})(8.4 \times 10^{-3})}{(5.82 \times 10^{-2})^2} \][/tex]
Calculating the numerator:
[tex]\[ (8.4 \times 10^{-3}) \times (8.4 \times 10^{-3}) = 8.4^2 \times 10^{-6} = 70.56 \times 10^{-6} = 7.056 \times 10^{-5} \][/tex]
Calculating the denominator:
[tex]\[ (5.82 \times 10^{-2})^2 = 5.82^2 \times 10^{-4} = 33.8724 \times 10^{-4} = 3.38724 \times 10^{-3} \][/tex]
Now, dividing the numerator by the denominator:
[tex]\[ K_{\text{eq}} = \frac{7.056 \times 10^{-5}}{3.38724 \times 10^{-3}} \][/tex]
[tex]\[ K_{\text{eq}} = \frac{7.056}{3.38724} \times 10^{-5+3} \][/tex]
[tex]\[ K_{\text{eq}} \approx 2.0831 \times 10^{-2} \][/tex]
So, the calculated value of \( K_{\text{eq}} \) is approximately \( 2.0831 \times 10^{-2} \).
Among the given options, the value that matches closely is:
[tex]\[ 2.1 \times 10^{-2} \][/tex]
Therefore, the value of \( K_{\text{eq}} \) for the reaction at 600 K is:
[tex]\[ 2.1 \times 10^{-2} \][/tex]
We hope this was helpful. Please come back whenever you need more information or answers to your queries. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.