Westonci.ca offers fast, accurate answers to your questions. Join our community and get the insights you need now. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To solve this problem, let's break it down step by step.
1. Identify the given information:
- The radius of the circle \( OA = 5 \) units.
- The fraction of the circumference represented by the arc length \( \frac{\text{length of } \widehat{AB}}{\text{circumference}} = \frac{1}{4} \).
2. Understand what is asked:
- We need to find the area of the sector \( AOB \).
3. Calculate the area of the whole circle:
- The formula for the area of a circle is \( \pi r^2 \).
- Given \( \pi = 3.14 \) and \( r = 5 \),
[tex]\[ \text{Area of the circle} = \pi \times r^2 = 3.14 \times 5^2 = 3.14 \times 25 = 78.5 \text{ square units} \][/tex]
4. Determine the fraction of the circle represented by the sector:
- The fraction given is \( \frac{1}{4} \).
- Therefore, the area of the sector \( AOB \) will be \( \frac{1}{4} \) of the area of the whole circle.
5. Calculate the area of the sector:
- Multiply the area of the circle by the fraction:
[tex]\[ \text{Area of the sector} = \frac{1}{4} \times 78.5 = 19.625 \text{ square units} \][/tex]
6. Choose the closest answer:
- Looking at the provided options, the closest one to 19.625 square units is:
[tex]\[ \boxed{19.6 \text{ square units}} \][/tex]
Therefore, the correct answer is [tex]\( \boxed{19.6 \text{ square units}} \)[/tex].
1. Identify the given information:
- The radius of the circle \( OA = 5 \) units.
- The fraction of the circumference represented by the arc length \( \frac{\text{length of } \widehat{AB}}{\text{circumference}} = \frac{1}{4} \).
2. Understand what is asked:
- We need to find the area of the sector \( AOB \).
3. Calculate the area of the whole circle:
- The formula for the area of a circle is \( \pi r^2 \).
- Given \( \pi = 3.14 \) and \( r = 5 \),
[tex]\[ \text{Area of the circle} = \pi \times r^2 = 3.14 \times 5^2 = 3.14 \times 25 = 78.5 \text{ square units} \][/tex]
4. Determine the fraction of the circle represented by the sector:
- The fraction given is \( \frac{1}{4} \).
- Therefore, the area of the sector \( AOB \) will be \( \frac{1}{4} \) of the area of the whole circle.
5. Calculate the area of the sector:
- Multiply the area of the circle by the fraction:
[tex]\[ \text{Area of the sector} = \frac{1}{4} \times 78.5 = 19.625 \text{ square units} \][/tex]
6. Choose the closest answer:
- Looking at the provided options, the closest one to 19.625 square units is:
[tex]\[ \boxed{19.6 \text{ square units}} \][/tex]
Therefore, the correct answer is [tex]\( \boxed{19.6 \text{ square units}} \)[/tex].
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.