Westonci.ca is your trusted source for accurate answers to all your questions. Join our community and start learning today! Join our Q&A platform and get accurate answers to all your questions from professionals across multiple disciplines. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To find the 8th term of a geometric sequence, we need a few key pieces of information:
1. The first term of the sequence (\(a\)).
2. The common ratio (\(r\)).
3. The position of the term we want to find (\(n\)).
Given:
- The first term (\(a\)) is 9.
- The common ratio (\(r\)) is -3.
- The term we are looking for is the 8th term (\(n = 8\)).
The formula for the \(n\)-th term of a geometric sequence is:
[tex]\[ a_n = a \cdot r^{(n-1)} \][/tex]
Let's plug the given values into the formula:
[tex]\[ a_8 = 9 \cdot (-3)^{(8-1)} \][/tex]
[tex]\[ a_8 = 9 \cdot (-3)^7 \][/tex]
Now we need to evaluate \((-3)^7\):
[tex]\[-3^7 = -3 \times -3 \times -3 \times -3 \times -3 \times -3 \times -3\][/tex]
Since the exponent is an odd number, the result of raising a negative number to an odd power is negative:
[tex]\[ (-3)^7 = -2187 \][/tex]
Now we multiply this result by the first term:
[tex]\[ a_8 = 9 \cdot (-2187) \][/tex]
[tex]\[ a_8 = -19683 \][/tex]
So, the 8th term of the geometric sequence is \(-19683\).
Among the given options, the correct answer is:
- [tex]\(-19,683\)[/tex].
1. The first term of the sequence (\(a\)).
2. The common ratio (\(r\)).
3. The position of the term we want to find (\(n\)).
Given:
- The first term (\(a\)) is 9.
- The common ratio (\(r\)) is -3.
- The term we are looking for is the 8th term (\(n = 8\)).
The formula for the \(n\)-th term of a geometric sequence is:
[tex]\[ a_n = a \cdot r^{(n-1)} \][/tex]
Let's plug the given values into the formula:
[tex]\[ a_8 = 9 \cdot (-3)^{(8-1)} \][/tex]
[tex]\[ a_8 = 9 \cdot (-3)^7 \][/tex]
Now we need to evaluate \((-3)^7\):
[tex]\[-3^7 = -3 \times -3 \times -3 \times -3 \times -3 \times -3 \times -3\][/tex]
Since the exponent is an odd number, the result of raising a negative number to an odd power is negative:
[tex]\[ (-3)^7 = -2187 \][/tex]
Now we multiply this result by the first term:
[tex]\[ a_8 = 9 \cdot (-2187) \][/tex]
[tex]\[ a_8 = -19683 \][/tex]
So, the 8th term of the geometric sequence is \(-19683\).
Among the given options, the correct answer is:
- [tex]\(-19,683\)[/tex].
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.