Discover the answers you need at Westonci.ca, where experts provide clear and concise information on various topics. Our platform offers a seamless experience for finding reliable answers from a network of experienced professionals. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.

Solve the equation [tex]2x + 3y = 5[/tex] for [tex]x[/tex].

A. [tex]x = -3y + \frac{5}{2}[/tex]
B. [tex]x = \frac{-3}{2}y + 5[/tex]
C. [tex]x = \frac{-3y + 5}{2}[/tex]
D. [tex]x = \frac{3y + 5}{2}[/tex]


Sagot :

To solve the equation \(2x + 3y = 5\) for \(x\), we need to check each of the given options to see which one satisfies the equation.

1. Option 1: \(x = -3y + \frac{5}{2}\)

Substitute \(x = -3y + \frac{5}{2}\) into the original equation:
[tex]\[ 2(-3y + \frac{5}{2}) + 3y = 5 \][/tex]
Simplify inside the parentheses:
[tex]\[ 2(-3y) + 2 \cdot \frac{5}{2} + 3y = 5 \][/tex]
This becomes:
[tex]\[ -6y + 5 + 3y = 5 \][/tex]
Combine like terms:
[tex]\[ -3y + 5 = 5 \][/tex]
Subtract 5 from both sides:
[tex]\[ -3y = 0 \][/tex]
Divide by -3:
[tex]\[ y = 0 \][/tex]
Substituting \(y = 0\) back, we see that it works only when \(y = 0\).

2. Option 2: \(x = \frac{-3}{2}y + 5\)

Substitute \(x = \frac{-3}{2}y + 5\) into the original equation:
[tex]\[ 2\left(\frac{-3}{2}y + 5\right) + 3y = 5 \][/tex]
Simplify inside the parentheses:
[tex]\[ 2 \cdot \frac{-3}{2}y + 2 \cdot 5 + 3y = 5 \][/tex]
This becomes:
[tex]\[ -3y + 10 + 3y = 5 \][/tex]
Combine like terms:
[tex]\[ 10 \neq 5 \][/tex]
So, this option is incorrect.

3. Option 3: \(x = \frac{-3y + 5}{2}\)

Substitute \(x = \frac{-3y + 5}{2}\) into the original equation:
[tex]\[ 2\left(\frac{-3y + 5}{2}\right) + 3y = 5 \][/tex]
Simplify inside the parentheses:
[tex]\[ \frac{2(-3y + 5)}{2} + 3y = 5 \][/tex]
Which simplifies to:
[tex]\[ -3y + 5 + 3y = 5 \][/tex]
Combine like terms:
[tex]\[ 5 = 5 \][/tex]
This option satisfies the original equation, so it is correct.

4. Option 4: \(x = \frac{3y + 5}{2}\)

Substitute \(x = \frac{3y + 5}{2}\) into the original equation:
[tex]\[ 2\left(\frac{3y + 5}{2}\right) + 3y = 5 \][/tex]
Simplify inside the parentheses:
[tex]\[ \frac{2(3y + 5)}{2} + 3y = 5 \][/tex]
Which simplifies to:
[tex]\[ 3y + 5 + 3y = 5 \][/tex]
Combine like terms:
[tex]\[ 6y + 5 = 5 \][/tex]
Subtract 5 from both sides:
[tex]\[ 6y = 0 \][/tex]
Divide by 6:
[tex]\[ y = 0 \][/tex]
Substituting \(y = 0\) back, we see that it works only when \(y = 0\).

Therefore, after checking all the options, the correct solution for the equation \(2x + 3y = 5\) is:
[tex]\[ \boxed{x = \frac{-3y + 5}{2}} \][/tex]
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.