Welcome to Westonci.ca, where finding answers to your questions is made simple by our community of experts. Get quick and reliable solutions to your questions from a community of experienced professionals on our platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To find the area of the given right triangle, we can break the problem down into the following steps:
1. Identify the given values:
- Adjacent leg (base, \( b \)) \( = 27.6 \) cm
- Hypotenuse (c) \( = 30 \) cm
2. Calculate the length of the opposite leg (height, \( h \)):
- We use the Pythagorean theorem for this, \( c^2 = a^2 + b^2 \), where \( c \) is the hypotenuse, \( a \) is the adjacent side, and \( b \) is the opposite side.
- Rearrange the equation to solve for the opposite side (height, \( h \)):
[tex]\[ h^2 = c^2 - a^2 \][/tex]
[tex]\[ h = \sqrt{c^2 - a^2} \][/tex]
- Substitute the given values:
[tex]\[ h = \sqrt{30^2 - 27.6^2} \][/tex]
[tex]\[ h \approx 11.8 \][/tex] cm (approximation rounded to one decimal place for simplicity)
3. Calculate the area of the triangle using the formula \( A = \frac{1}{2} b h \):
- Substitute the values of the base \( b = 27.6 \) cm and height \( h \approx 11.8 \) cm:
[tex]\[ A = \frac{1}{2} \times 27.6 \times 11.8 \][/tex]
- Calculate the area:
[tex]\[ A \approx \frac{1}{2} \times 27.6 \times 11.8 \][/tex]
[tex]\[ A \approx 162.3 \][/tex] cm\(^2\) (approximation rounded to one decimal place)
Therefore, the approximate area of the triangle is \( 162.3 \) square centimeters.
Comparing this to the provided options:
- \( 68.7 \) cm\(^2\)
- \( 161.8 \) cm\(^2\)
- \( 381.3 \) cm\(^2\)
- \( 450.0 \) cm\(^2\)
The closest option is \( 161.8 \) cm\(^2\).
Thus, the approximate area of the triangle is [tex]\( 161.8 \)[/tex] cm[tex]\(^2\)[/tex].
1. Identify the given values:
- Adjacent leg (base, \( b \)) \( = 27.6 \) cm
- Hypotenuse (c) \( = 30 \) cm
2. Calculate the length of the opposite leg (height, \( h \)):
- We use the Pythagorean theorem for this, \( c^2 = a^2 + b^2 \), where \( c \) is the hypotenuse, \( a \) is the adjacent side, and \( b \) is the opposite side.
- Rearrange the equation to solve for the opposite side (height, \( h \)):
[tex]\[ h^2 = c^2 - a^2 \][/tex]
[tex]\[ h = \sqrt{c^2 - a^2} \][/tex]
- Substitute the given values:
[tex]\[ h = \sqrt{30^2 - 27.6^2} \][/tex]
[tex]\[ h \approx 11.8 \][/tex] cm (approximation rounded to one decimal place for simplicity)
3. Calculate the area of the triangle using the formula \( A = \frac{1}{2} b h \):
- Substitute the values of the base \( b = 27.6 \) cm and height \( h \approx 11.8 \) cm:
[tex]\[ A = \frac{1}{2} \times 27.6 \times 11.8 \][/tex]
- Calculate the area:
[tex]\[ A \approx \frac{1}{2} \times 27.6 \times 11.8 \][/tex]
[tex]\[ A \approx 162.3 \][/tex] cm\(^2\) (approximation rounded to one decimal place)
Therefore, the approximate area of the triangle is \( 162.3 \) square centimeters.
Comparing this to the provided options:
- \( 68.7 \) cm\(^2\)
- \( 161.8 \) cm\(^2\)
- \( 381.3 \) cm\(^2\)
- \( 450.0 \) cm\(^2\)
The closest option is \( 161.8 \) cm\(^2\).
Thus, the approximate area of the triangle is [tex]\( 161.8 \)[/tex] cm[tex]\(^2\)[/tex].
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.