At Westonci.ca, we provide reliable answers to your questions from a community of experts. Start exploring today! Get the answers you need quickly and accurately from a dedicated community of experts on our Q&A platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
Sure! Let's solve this step by step.
We're asked to find the coefficient of \(x^4\) in the expansion of \(\left(x + \frac{1}{2}\right)^4\).
1. Understand the Expansion:
Recall the binomial theorem, which states:
[tex]\[ (a + b)^n = \sum_{k=0}^{n} \binom{n}{k} a^{n-k} b^k \][/tex]
In this case, \(a = x\), \(b = \frac{1}{2}\), and \(n = 4\).
2. Set Up the Relevant Terms:
We're interested in the term where the power of \(x\) is \(4\). Using the binomial theorem, this term is represented when the exponent of \(x\) is \(4\):
[tex]\[ \binom{4}{4} x^4 \left(\frac{1}{2}\right)^{4-4} \][/tex]
3. Calculate the Coefficient:
[tex]\[ \binom{4}{4} x^4 \left(\frac{1}{2}\right)^{0} = \binom{4}{4} x^4 = 1 \cdot x^4 \][/tex]
Here, \(\binom{4}{4}\) is the binomial coefficient, which evaluates to \(1\).
So, the coefficient of [tex]\(x^4\)[/tex] in the expansion of [tex]\(\left(x + \frac{1}{2}\right)^4\)[/tex] is 1.
We're asked to find the coefficient of \(x^4\) in the expansion of \(\left(x + \frac{1}{2}\right)^4\).
1. Understand the Expansion:
Recall the binomial theorem, which states:
[tex]\[ (a + b)^n = \sum_{k=0}^{n} \binom{n}{k} a^{n-k} b^k \][/tex]
In this case, \(a = x\), \(b = \frac{1}{2}\), and \(n = 4\).
2. Set Up the Relevant Terms:
We're interested in the term where the power of \(x\) is \(4\). Using the binomial theorem, this term is represented when the exponent of \(x\) is \(4\):
[tex]\[ \binom{4}{4} x^4 \left(\frac{1}{2}\right)^{4-4} \][/tex]
3. Calculate the Coefficient:
[tex]\[ \binom{4}{4} x^4 \left(\frac{1}{2}\right)^{0} = \binom{4}{4} x^4 = 1 \cdot x^4 \][/tex]
Here, \(\binom{4}{4}\) is the binomial coefficient, which evaluates to \(1\).
So, the coefficient of [tex]\(x^4\)[/tex] in the expansion of [tex]\(\left(x + \frac{1}{2}\right)^4\)[/tex] is 1.
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.