Get the answers you need at Westonci.ca, where our expert community is always ready to help with accurate information. Join our Q&A platform to connect with experts dedicated to providing precise answers to your questions in different areas. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To solve this problem, we need to find \(\sin L\), \(\cos L\), \(\tan L\), \(\sin M\), \(\cos M\), and \(\tan M\) given the values \(\ell=12\), \(m=12\sqrt{3}\), and \(n=24\). We'll express each trigonometric ratio both as a fraction and as a decimal to the nearest hundredth.
### Calculating \(\sin L\), \(\cos L\), and \(\tan L\)
1. \(\sin L\):
- \(\sin L = \frac{\ell}{n} = \frac{12}{24} = \frac{1}{2}\)
- As a decimal: \(\frac{1}{2} = 0.50\)
2. \(\cos L\):
- \(\cos L = \frac{m}{n} = \frac{12\sqrt{3}}{24} = \frac{\sqrt{3}}{2}\)
- As a decimal: \(\frac{\sqrt{3}}{2} \approx 0.87\)
3. \(\tan L\):
- \(\tan L = \frac{\sin L}{\cos L} = \frac{\frac{1}{2}}{\frac{\sqrt{3}}{2}} = \frac{1}{\sqrt{3}} = \frac{\sqrt{3}}{3}\)
- As a decimal: \(\frac{\sqrt{3}}{3} \approx 0.58\)
### Calculating \(\sin M\), \(\cos M\), and \(\tan M\)
1. \(\sin M\):
- \(\sin M = \frac{m}{n} = \frac{12\sqrt{3}}{24} = \frac{\sqrt{3}}{2}\)
- As a decimal: \(\frac{\sqrt{3}}{2} \approx 0.87\)
2. \(\cos M\):
- \(\cos M = \frac{\ell}{n} = \frac{12}{24} = \frac{1}{2}\)
- As a decimal: \(\frac{1}{2} = 0.50\)
3. \(\tan M\):
- \(\tan M = \frac{\sin M}{\cos M} = \frac{\frac{\sqrt{3}}{2}}{\frac{1}{2}} = \sqrt{3}\)
- As a decimal: \(\sqrt{3} \approx 1.73\)
### Summary of Results:
- \(\sin L = \frac{1}{2} \approx 0.50 \)
- \(\cos L = \frac{\sqrt{3}}{2} \approx 0.87 \)
- \(\tan L = \frac{\sqrt{3}}{3} \approx 0.58 \)
- \(\sin M = \frac{\sqrt{3}}{2} \approx 0.87 \)
- \(\cos M = \frac{1}{2} \approx 0.50 \)
- \(\tan M = \sqrt{3} \approx 1.73 \)
Based on the above calculations, the correct answer is:
c [tex]\(\sin L=\frac{1}{2} \approx 0.50 ; \cos L=\frac{\sqrt{3}}{2} \approx 0.87 ; \tan L=\frac{1}{\sqrt{3}}\)[/tex] or [tex]\(\frac{\sqrt{3}}{3} \approx 0.58 ; \sin M=\frac{\sqrt{3}}{2} \approx 0.87 ; \cos M=\frac{1}{2} \approx 0.50 ; tan M=\sqrt{3} \approx 1.73\)[/tex]
### Calculating \(\sin L\), \(\cos L\), and \(\tan L\)
1. \(\sin L\):
- \(\sin L = \frac{\ell}{n} = \frac{12}{24} = \frac{1}{2}\)
- As a decimal: \(\frac{1}{2} = 0.50\)
2. \(\cos L\):
- \(\cos L = \frac{m}{n} = \frac{12\sqrt{3}}{24} = \frac{\sqrt{3}}{2}\)
- As a decimal: \(\frac{\sqrt{3}}{2} \approx 0.87\)
3. \(\tan L\):
- \(\tan L = \frac{\sin L}{\cos L} = \frac{\frac{1}{2}}{\frac{\sqrt{3}}{2}} = \frac{1}{\sqrt{3}} = \frac{\sqrt{3}}{3}\)
- As a decimal: \(\frac{\sqrt{3}}{3} \approx 0.58\)
### Calculating \(\sin M\), \(\cos M\), and \(\tan M\)
1. \(\sin M\):
- \(\sin M = \frac{m}{n} = \frac{12\sqrt{3}}{24} = \frac{\sqrt{3}}{2}\)
- As a decimal: \(\frac{\sqrt{3}}{2} \approx 0.87\)
2. \(\cos M\):
- \(\cos M = \frac{\ell}{n} = \frac{12}{24} = \frac{1}{2}\)
- As a decimal: \(\frac{1}{2} = 0.50\)
3. \(\tan M\):
- \(\tan M = \frac{\sin M}{\cos M} = \frac{\frac{\sqrt{3}}{2}}{\frac{1}{2}} = \sqrt{3}\)
- As a decimal: \(\sqrt{3} \approx 1.73\)
### Summary of Results:
- \(\sin L = \frac{1}{2} \approx 0.50 \)
- \(\cos L = \frac{\sqrt{3}}{2} \approx 0.87 \)
- \(\tan L = \frac{\sqrt{3}}{3} \approx 0.58 \)
- \(\sin M = \frac{\sqrt{3}}{2} \approx 0.87 \)
- \(\cos M = \frac{1}{2} \approx 0.50 \)
- \(\tan M = \sqrt{3} \approx 1.73 \)
Based on the above calculations, the correct answer is:
c [tex]\(\sin L=\frac{1}{2} \approx 0.50 ; \cos L=\frac{\sqrt{3}}{2} \approx 0.87 ; \tan L=\frac{1}{\sqrt{3}}\)[/tex] or [tex]\(\frac{\sqrt{3}}{3} \approx 0.58 ; \sin M=\frac{\sqrt{3}}{2} \approx 0.87 ; \cos M=\frac{1}{2} \approx 0.50 ; tan M=\sqrt{3} \approx 1.73\)[/tex]
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.