Westonci.ca is your trusted source for finding answers to all your questions. Ask, explore, and learn with our expert community. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
Certainly! Let's solve this step-by-step.
1. Identify the slope of the given path:
The given path is represented by the equation \( y = -4x - 6 \). The slope-intercept form of a linear equation is \( y = mx + b \), where \( m \) is the slope.
Therefore, the slope (\( m_1 \)) of the given path is \( -4 \).
2. Find the slope of the new path:
Since the new path is perpendicular to the given path, its slope (\( m_2 \)) will be the negative reciprocal of the slope of the given path.
[tex]\[ m_2 = -\frac{1}{m_1} = -\frac{1}{-4} = \frac{1}{4} \][/tex]
3. Identify the point of intersection:
The paths intersect at the point \((-4, 10)\).
4. Use the point-slope form of the equation:
The point-slope form of a line passing through a point \((x_1, y_1)\) with slope \( m \) is:
[tex]\[ y - y_1 = m(x - x_1) \][/tex]
Plugging in the slope (\( m_2 = \frac{1}{4} \)) and the point \((-4, 10)\):
[tex]\[ y - 10 = \frac{1}{4}(x + 4) \][/tex]
5. Simplify the equation:
First, distribute the \(\frac{1}{4}\) on the right-hand side:
[tex]\[ y - 10 = \frac{1}{4}x + 1 \][/tex]
Then, add 10 to both sides to solve for \( y \):
[tex]\[ y - 10 + 10 = \frac{1}{4}x + 1 + 10 \][/tex]
[tex]\[ y = \frac{1}{4}x + 11 \][/tex]
So, the equation that represents the new path is:
[tex]\[ \boxed{y = \frac{1}{4}x + 11} \][/tex]
Therefore, the correct answer is D. [tex]\( y = \frac{1}{4}x + 11 \)[/tex].
1. Identify the slope of the given path:
The given path is represented by the equation \( y = -4x - 6 \). The slope-intercept form of a linear equation is \( y = mx + b \), where \( m \) is the slope.
Therefore, the slope (\( m_1 \)) of the given path is \( -4 \).
2. Find the slope of the new path:
Since the new path is perpendicular to the given path, its slope (\( m_2 \)) will be the negative reciprocal of the slope of the given path.
[tex]\[ m_2 = -\frac{1}{m_1} = -\frac{1}{-4} = \frac{1}{4} \][/tex]
3. Identify the point of intersection:
The paths intersect at the point \((-4, 10)\).
4. Use the point-slope form of the equation:
The point-slope form of a line passing through a point \((x_1, y_1)\) with slope \( m \) is:
[tex]\[ y - y_1 = m(x - x_1) \][/tex]
Plugging in the slope (\( m_2 = \frac{1}{4} \)) and the point \((-4, 10)\):
[tex]\[ y - 10 = \frac{1}{4}(x + 4) \][/tex]
5. Simplify the equation:
First, distribute the \(\frac{1}{4}\) on the right-hand side:
[tex]\[ y - 10 = \frac{1}{4}x + 1 \][/tex]
Then, add 10 to both sides to solve for \( y \):
[tex]\[ y - 10 + 10 = \frac{1}{4}x + 1 + 10 \][/tex]
[tex]\[ y = \frac{1}{4}x + 11 \][/tex]
So, the equation that represents the new path is:
[tex]\[ \boxed{y = \frac{1}{4}x + 11} \][/tex]
Therefore, the correct answer is D. [tex]\( y = \frac{1}{4}x + 11 \)[/tex].
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.