Westonci.ca is your trusted source for finding answers to all your questions. Ask, explore, and learn with our expert community. Experience the ease of finding quick and accurate answers to your questions from professionals on our platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.

What is the area of a circle whose radius is [tex]$6 \text{ ft}$[/tex]?

A. [tex]6 \pi \text{ ft}^2[/tex]
B. [tex]9 \pi \text{ ft}^2[/tex]
C. [tex]36 \pi \text{ ft}^2[/tex]
D. [tex]72 \pi \text{ ft}^2[/tex]


Sagot :

To find the area of a circle, you can use the formula:

[tex]\[ \text{Area} = \pi \times (\text{radius})^2 \][/tex]

Given that the radius of the circle is \( 6 \) feet, you substitute the radius into the formula:

[tex]\[ \text{Area} = \pi \times (6)^2 \][/tex]

First, calculate the square of the radius:

[tex]\[ (6)^2 = 36 \][/tex]

Then multiply this result by \(\pi\):

[tex]\[ \text{Area} = \pi \times 36 = 36 \pi \][/tex]

So, the area of the circle with a radius of 6 feet is:

[tex]\[ \boxed{36 \pi \, \text{ft}^2} \][/tex]

Among the given options:
- \( 6 \pi \, \text{ft}^2 \)
- \( 9 \pi \, \text{ft}^2 \)
- \( 36 \pi \, \text{ft}^2 \)
- \( 72 \pi \, \text{ft}^2 \)

The correct choice is:

[tex]\[ 36 \pi \, \text{ft}^2 \][/tex]